博碩士論文 101324008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:147 、訪客IP:13.58.151.231
姓名 王嘉偉(Chia-wei Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以水平沈積法製備二元膠體晶體光學膜
(Fabrication of binary colloidal crystal opal films by horizontal deposition method)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要以無乳化劑乳化聚合法於常壓之沸騰環境下,快速合成均一粒徑次微米球與奈米球。並進一步設計其擁有不同特性,如具有不同粒徑次微米球、不同玻璃轉移溫度(Tg)次微米球以及不同官能基比例次微米球,以及不同玻璃轉移溫度的奈米球。依照其特性差異,成功地將其應用於提升光子晶體薄膜之機械性質。
首先,利用不同甲基丙烯酸甲酯(MMA)單體克數製備出不同粒徑大小之次微米球,而MMA單體添加量4 g-10 g所製備之次微米球經自組裝過程後,其光子晶體能隙位置落於可見光範圍400-700 nm內。藉由Flory-Fox方程式調整丙烯酸丁酯(BA)與MMA單體之進料比可以製備具不同Tg之次微米球,當BA之重量百分比增加時,便可使次微米球之Tg由118.5 °C降低至-5.6 °C,且粒徑均相當均一。將具不同Tg次微米球於高低環境溫度下自組裝後,由結果顯示50 °C高溫環境溫度下有助於自組裝排列更為規則。Tg 40 °C以上之次微米球於SEM下呈現圓球狀並可顯現出結構性色彩。Tg 30 °C以下之次微米球於SEM下呈現平膜狀且不具備結構性色彩,但薄膜具有良好的成膜性質。薄膜的機械性質隨著次微米球的Tg降低,逐漸由脆性高分子轉變為彈性高分子。
進而,藉由將低Tg奈米球與高Tg次微米球混合後,自組裝形成光子晶體薄膜。由SEM結果顯示低Tg奈米球於高溫環境下會軟化成殼,包覆於次微米球外圍形成殼層球,且具有規則性排列,造成光子能隙出現紅移現象。雖然光子能隙反射波峰強度降低,但是薄膜的成膜性質增加達到5B鉛筆硬度。
藉由將高Tg奈米球與低Tg次微米球混合後,自組裝形成光子晶體薄膜。由SEM結果顯示,高Tg奈米球位於次微米球間的縫隙,形成光子晶體框架,防止低Tg次微米球於成膜過程中崩塌,進而使原本不具光子能隙的薄膜顯現出結構性色彩,並且具有高透明的性質。經拉伸測試後,薄膜的機械性質可由調整次微米球之Tg與高Tg奈米球之添加量而控制。
最後改變低Tg次微米球之甲基丙烯酸(MAA)比例,隨著MAA比例增加,薄膜的機械性質逐漸由彈性轉變為脆性。藉由添加高Tg奈米球於薄膜中,經自組裝排列後可形成規則性結構,並顯現出結構性色彩。經拉伸測試後,由結果顯示薄膜的機械性質可由調整低Tg次微米球之MAA比例與高Tg奈米球之添加量而控制。
摘要(英) This study focuses on preparation of monodisperse submicron-scale and nano-sacle polymer spheres and the films forming ability by these two kinds polymer spheres. Submicrospheres with different particle sizes, glass transition temperatures (Tgs) and carboxyl groups were prepared. On the other hand, nanospheres with different Tgs were also prepared. The photonic crystal films with mechanical properties can be improved by self-assembly method of these two kinds of spheres.
The five topics were discussed in this study. The first topic was preparation and characterization of monodisperse poly(methyl methacrylate-co-methacrylic acid) submicrospheres via soap-free emulsion polymerization. Different particle sizes from 82 nm to 502 nm were prepared by adding 1 g to 20 g monomers.
In second topic, different Tgs submicrospheres were prepared by copolymerization of butyl acrylate (BA) and MMA. When the weight percentage of BA increased from 0 wt% to 88 wt%, the Tg of submicrospheres decreased from 118 °C to -5.6 °C. Photonic crystal films of these submicrospheres were then studied to identify the relationship between variation in Tgs and the optical properties.
In third topic, the monodisperse low Tg nanospheres were prepared and mixed with submicrospheres to form self-assemble binary colloidal crystal (BCC) films. The results showed that submicrospheres surrounded by soft nanospheres and formed like core-shell structure with a regular arrangement. The film forming properties of hardness film prepared from high Tg submicrospheres improved to 5B pencil hardness by the aid of 20 wt% low Tg nanospheres.
In fourth topic, the monodisperse high Tg nanospheres were prepared and mixed with submicrospheres to form self-assembly BCC films. The results showed that submicrospheres surrounded by hard nanospheres and formed a photonic crystal framework to prevent the collapse of the low Tg submicrospheres during film formation. According to the stress-strain diagram, the mechanical properties of BCC films were able to tune by the Tg of submicrospheres and the blended content of high Tg nanospheres. Base on the BCC film prepared by the Tg 0 °C submicrospheres and 20 wt% of high Tg nanospheres, the ultimate tensile strength and maximum elongation were able to achieve 0.78 MPa and 222 %.
In fifth topic, submicrospheres with different carboxyl groups were prepared with MAA 0 wt% to 30 wt%. The results showed that the mechanical properties of the film changed gradually from elastic to brittle. When adding 20 wt% high Tg nanosphers into the film, the MAA ratio of submicrospheres changed from 0 wt% to 8 wt%, the ultimate tensile strength were able to increase from 1.3 MPa to 3.5 MPa and maximum elongation were able decrease from 359 % to 13 %.
關鍵字(中) ★ 無乳化劑乳化聚合法
★ 水平沉積法
★ 光子晶體
★ 二元膠體晶體
關鍵字(英) ★ Soap-free emulsion polymerization
★ horizontal deposition method
★ photonic crystal
★ binary colloidal crystal
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XXI
第一章 緒論 1
1-1 均一粒徑高分子球之簡介與文獻回顧 1
1-2 光子晶體之簡介與文獻回顧 3
1-3 二元膠體晶體之簡介與文獻回顧 5
1-4 研究動機及目的 8
第二章 實驗 9
2-1 實驗藥品 9
2-2 實驗儀器 11
2-3 實驗方法 13
2-3-1 單體精製 13
2-3-2 製備不同粒徑之均一粒徑次微米球 13
2-3-3 製備不同玻璃轉移溫度之次微米球 13
2-3-4 製備不同玻璃轉移溫度之奈米球 14
2-3-5 二元膠體晶體光學膜之製備 14
2-4 儀器分析 14
2-4-1 掃描式電子顯微鏡(SEM)測試條件 14
2-4-2 動態粒徑分析儀(DLS)測試條件 15
2-4-3 紫外-可見光光譜儀(UV-VIS)測試條件 15
2-4-4傅立葉轉換紅外線光譜儀(FTIR)測試條件 15
2-4-5 微差掃描分析儀(DSC)測試條件 15
2-4-6 鉛筆硬度計(Industrial Pencil Hardness Test)測試條件 16
2-4-7 萬能材料試驗機(Universal Testing Machine)之拉伸測試條件 16
第三章 結果與討論 17
3-1 不同粒徑次微米球之製備及其性質 18
3-2 具不同高低玻璃轉移溫度次微米球之製備及其性質 31
3-3 高Tg次微米球混合低Tg奈米球之二元膠體晶體光學膜製備及其性質 47
3-3-1 低Tg奈米球之製備 47
3-3-2 光子晶體薄膜性質之鑑定 52
3-4 高低Tg次微米球混合高Tg奈米球之二元膠體晶體光學膜製備及其性質 73
3-4-1 高Tg奈米球之製備 73
3-4-2 光子晶體薄膜性質之鑑定 77
3-5 具不同甲基丙烯酸比例之低Tg次微米球混合高Tg奈米球之二元膠體晶體光學膜製備及其性質 117
3-5-1 具不同甲基丙烯酸比例次微米球之鑑定 117
3-5-2 光子晶體薄膜性質之鑑定 125
第四章 結論 144
參考文獻 148
參考文獻 1. T. Matsumoto, A. Ochi, "Polymerization of styrene in aqueous solution", Kobunshi Kagaku, 22 (1965), 481-487.
2. Z. Z. Gu, H. H. Chen, S. Zhang et al., "Rapid synthesis of monodisperse polymer spheres for self-assembled photonic crystals", Colloid and Surfaces A: Physicochem. Eng. Aspects, 302 (2007), 312-319.
3. S. C. Gu, T. Sakamoto, Y. Yamada et al., "Agitation requirement for synthesis of micron-sized monodisperse polymer particles in soap-free polymerization method", Colloid and Polymer Science, 285 (2007), 581-586.
4. X. Du and J. H. He, "Facile size-controllable syntheses of highly monodisperse polystyrene nano- and microspheres by polyvinylpyrrolidone-mediated emulsifier-free emulsion polymerization ", Journal of Applied Polymer Science, 108 (2008), 1755-1760.
5. Y. Y. Liu, M. Y. Lo, and H. Chen, "Characterization of monodisperse copolymer submicrospheres with branched structures and different glass-transition temperatures prepared by soap-free emulsion polymerization", Journel of Applied Polymer Science, 120 (2011), 2945-2953.
6. S. John, "Strong localization of photons in certain disordered dielectric superlattices", Physical Review Letters, 58 (1987), 2486-2489.
7. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics", Physical Review Letters, 58 (1987), 2059-2062
8. K. Liu, T. A. Schmedake, and R. Tsu, "A comparative study of colloidal silica spheres:photonic crystal versus bragg’s law", Physical Letters A, 372 (2008), 4517-4520.
9. W. Wang, B. H. Gu, and L. Y. Liang, "Effect of anionic surfactants on synthesis and self-assembly of silica colloidal nanoparticles ", Journal of Colloid and Interface Science, 313 (2007), 169-173.
10. D. J. Brink, and M. E. Lee, "Confined blue iridescence by a diffracting microstructure:an optical investigation of the cynandra opis butterfly", Applied Optics, 38 (1999), 5282-5289
11. C. Lawrence, P. Vukusic, and R. Sambles, "Grazing-incidence iridescence from a butterfly wing", Applied Optics, 41 (2002), 437-441
12. H. Ghiradella, "Light and color on the wing:structural colors in butterflies and moths", Appl. Opt., 30 (1991), 2492-3500.
13. L. P. Biro, Z. Balint, K. Kertesz, Z. vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse, and J. P. Vigneron, "Role of photonic-crystal-type structure in the thermal regulation of a lycaenid butterfly sister species pair", Physical Review E, 67 (2003), 0219071-0219077.
14. A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, "Gold bugs and beyond:a review of iridescence and structural color mechanisms in beetles (coleoptera)", Journal of The Royal Society Interface, 6 (2009), 165-184.
15. J. P. Ge, and Y. D. Yin, "Responsive Photonic Crystals", Angewandte Chemie-International Edition, 50 (2011), 1492-1522.
16. T. F. Krauss, R. M. Delarue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near infrared wavelengths". Nature, 383 (1996), 699-702
17. O. Painter, R. K. Lee, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-domensional photonic band-gap defect mode laser", Science, 284 (1999), 1819-1821.
18. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a photonic bandgap structure", Nature, 407 (2000), 608-610.
19. Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, and E. L. Thomas, "Block copolymer as photonic bandgap materials", Journal of Lightwave Technology, 17 (1999), 1963-1969.
20. A. Urbas, Y. Fink, and E. L. Thomas, "One-dimensionally periodic deielctric reflectors from self-assembled block copolymer-homopolymer blends", Macromolecules, 32 (1999), 4748-4750.
21. Q. B. Meng, Z. Z. Gu, O. Sato, A Fujishima, "Fabrication of highly ordered porous structures", Applied Physic Letters, 77 (2000), 4313-4315.
22. Y. Xia, B. Gates, Y. YIN, Y. Lu, "Monodispersed colloidal spheres:old materials with new applications", Advanced Material, 10 (2000), 693-713.
23. Z. Z. Gu, Q. B. Meng, S. Hayami, A. Fujishima, O. Sato, "Self-assembly of submicron particles between electrodes", Journal of Applied Physics, 90 (2001), 2042-2044.
24. H. Wang, K. P. Yan, J. Xie et al., "Fabrication of ZnO colloidal photonic crystal by spin-coating method", Materials Science in Semiconductor Processing, 11(2008), 44-47.
25. Y. N. Fu, Z. G. Jin, G. Q. Liu, and Y. X. Yin, "Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation mehod", Synthetic Metals, 159 (2009), 1744-1750.
26. T. Kanai, T. Sawada, and J. Yamanaka, "Fabrication of large-area silica colloidal crystals immobilized in hydrogel film", Journal of the Ceramic Society of Japan, 118 (2010), 370-373.
27. L. M. Fortes, M. C. Goncalves, and R. M. Almedia, "Flexible photonic crystals for strain sensing", Optical Materials, 33 (2011), 408-412.
28. E. T. Tian, L. Y. Chi, J. X. Wang, Y. L. Song, and L. Jiang, "Tough photonic crystals fabricated by photo-crosslinkage of latex spheres", Macromolecular Rapid Communications, 30 (2009), 509-514.
29. H. Fudouzi, "Opitical properties caused by periodical array structure with colloidal particles and their applications", Advanced Powder Technology, 20 (2009), 502-508.
30. J. G. Mcgrath, R. D. Bock, J. M. Cathcart, and L. A. Lyon, "Self-assembly of paint-on colloidal crystals using poly(styrene-co-n-isopropylacrylamide) spheres", Chemistry of Materials, 19 (2007), 1584-1591.
31. C. E. Finlayson, A. I. Haines, D. R. E. Snoswell, A. Kontogeorgos, S. Vignolini, J. J. Baumberg, P. Spahn, and G. P. Hellmann, "Interplay of index contrast with periodicity in polymer photonic crystals", Applied Physics Letters, 99 (2011).
32. Y. C. Kuo, Y. C. Lee, and H. Chen, "Synthesis of photonic crystal film by self-assembly of core/shell poly(styrene)/poly(styrene-co-butyl methacrylate) submicrospheres", Journal of Thermoplastic Composite Materials (2012).
33. N. Vogel, C. K. Weiss, and K. Landfester, "From soft to hard:the generation of functional and complex colloidal monolayers for nanolithography", Soft Matter, 8 (2012), 4044-4061.
34. L. Wang, Y. Wan, Y. Li, Z. Cai, H. L. Li, X. S. Zhao, and Q. Li, "Binary colloidal crystals fabricated with a horizontal deposition method", Langmuir, 25 (2009), 6753-6759.
35. S. Zhang, B. You, G. Gu, and L. Wu, "A simple approach to fabricate morphological gradient on polymer surfaces", Polymer, 50 (2009), 6235-6244.
36. S. Zhang, S. Zhou, B. You, and L. Wu, "Fabrication of ordered porous polymer film via a one-step strategy and its formation mechanism", Macromolecules, 42 (2009), 3591-3597.
37. J. Yu, Q. Yan and D. Shen, "Co-self-assembly of binary colloidal crystals at the air-water interface", Applied Materials and Interfaces, 2 (2010), 1922-1926.
38. L. Duan, B. You, L. Wu, and M. Chen, "Facile fabrication of mechanochromic-responsive colloidal crystal films", Journal of Colloid and Interface Science, 353 (2011), 163-168.
39. Z. Cai, J. Teng, Y. Wan, and X. S. Zhao, "An improved convective self-assembly method for the fabrication of binary colloidal crystals and inverse structures", Journal of Colloid and Interface Science, 380 (2012), 42-50.
40. Z. Shen, L. Shi, B. You, L. Wu, and D. Zhao, "Large-scale fabrication of the three-dimensional ordered polymer films with strong structure colors and robust mechanical properties", Journal of Materials Chemistry, 22 (2012), 8069-8075.
41. T. Taenghom, Q. Pan, G. L. Rempel, and S. Kiatkamjornwong, "Synthesis and characterization of nano-sized poly[(butyl acrylate)-co-(methyl methacrylate)-co-(methacrylic acid)] latex via differential microemulsion polymerization", Colloid Polymer Science, 291 (2013), 1365-1374.
42. Z. Liu, H. Xiao, "Soap-free emulsion copolymerization of styrene with cationic monomer:effect of ethanol as a cosolvent", Polymer, 41 (2000), 7023-7031.
指導教授 陳暉(Hui Chen) 審核日期 2014-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明