博碩士論文 101324019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.235.140.84
姓名 沈奕廷(Yi-ting Shen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究
★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗
★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗
★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬
★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估★ 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以模擬方法利用變溫吸附分離程序以及真空變溫吸附分離程序處理發電廠所產生之煙道氣,目的在於將二氧化碳回收以及濃縮,使之封存以減少人為造成溫室氣體的排放。其中煙道氣含量為15.03% CO2和84.97%N2的混合氣,而吸附劑為工研院綠能所製備的PEI/SBA-15吸附劑。
  模擬程式中使用了method of lines結合finite differences、upwind differences和cubic spline approximation,再以ODEPACK套裝軟體中之LSODE程式對時間作積分,估計出下段時間的濃度、溫度及壓力,之後一直重複循環計算到系統達到週期性穩態為止。
  本研究使用的兩種程序經變因探討後得到的最佳程序如下:變溫吸附程序最佳的操作條件為吸附溫度60 oC、進料時間400 s、自然產氣時間100 s及P/F ratio 0.15。在此條件下其結果為二氧化碳濃度47.20%,回收率93.72%。捕獲每噸二氧化碳所需能耗為3.78 GJ;真空變溫吸附程序最佳的操作條件為吸附溫度60 oC、進料時間600 s、抽真空時間600 s及沖洗時間10 s。在此條件下其結果為二氧化碳濃度90.71%,回收率90.99%。捕獲每噸二氧化碳所需能耗為2.84 GJ。
摘要(英) In this study, the temperature swing adsorption (TSA) process and temperature vacuum swing adsorption (TVSA) process are studied to separate CO2 from power plant flue gas. The purpose of the carbon dioxide recovery and concentration is to reduce human-caused greenhouse-gas emissions. The flue gas is composed of 15.03% CO2 and 84.97% N2 gas mixture and the adsorbent is PEI/SBA-15 adsorbent, which is prepared by the Green Energy and Environment Research Laboratories, Industrial Technology Research Institute.
The method of lines is utilized, combined with finite differences, upwind differences, cubic spline approximation and LSODE of ODEPACK software to solve the problem. The concentration, temperature, and adsorption quantity in the bed are integrated with respect to time by LSODE of ODEPACK software. The simulation is stopped when the system reaches a cyclic steady state.
Two processes have been used in this study, TSA and TVSA. After the variables discussion, the best processes for two processes are as following: the best operating condition for TSA process is adsorption temperature 60 oC, feed time 400 s, vent time 100 s, and P/F ratio 0.15. The results of the best operating condition reach the purity of 47.2% and the recovery of 87.26% of CO2 with an energy consumption of 3.78 GJ/ton CO2; the best operating condition for TVSA process is adsorption temperature 60 oC, feed time 600 s, vacuum time 600 s, and purge time 10 s. The results of the best operating condition are 90.71% purity and 90.99% recovery of CO2 with an energy consumption of 2.84 GJ/ton CO2.
關鍵字(中) ★ 二氧化碳捕獲
★ 模擬
★ 變溫吸附
★ 真空變溫吸附
★ PEI/SBA-15
關鍵字(英) ★ carbon dioxide capture
★ Simulation
★ Temperature Swing Adsorption
★ Vacuum Temperature Swing Adsorption
★ PEI/SBA-15
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章、緒論 1
第二章、簡介及文獻回顧 5
2-1 吸附之簡介 5
2-1-1 吸附基本原理 5
2-1-2 吸附劑及其選擇性 6
2-1-3 吸附劑再生 7
2-2 文獻回顧 9
2-2-1 理論回顧 9
2-2-2 以PEI表面改質捕獲CO2之相關文獻 11
2-2-3 利用變溫吸附程序處理煙道氣之相關文獻 12
第三章、理論 14
3-1 基本假設 15
3-2 統制方程式 16
3-3 吸附平衡關係式 21
3-4 參數推導 22
3-4-1 PEI/SBA-15吸附劑對CO2之吸附熱 22
3-4-2 軸向分散係數 23
3-4-3 熱傳系數 25
3-5 邊界條件與流速 27
3-5-1 邊界條件與節點流速 27
3-5-2 閥公式 28
3-6 求解步驟 29
第四章、製程描述 32
4-1 突破曲線製程 33
4-2 單塔變溫吸附製程 34
4-3 單塔真空變溫吸附製程 36
4-4 氣體性質與吸附參數 38
4-5 程式驗證 41
第五章、數據分析與結果討論 45
5-1 單塔變溫吸附程序之模擬 45
5-1-1 吸附溫度和進料時間對單塔變溫吸附程序之影響 48
5-1-2 自然產氣時間對單塔變溫吸附程序之影響 60
5-1-3 P/F ratio和進料時間對單塔變溫吸附程序之影響 65
5-2 單塔真空變溫吸附程序之模擬 79
5-2-1 進料時間對單塔變溫吸附程序之影響 82
5-2-2 抽真空對單塔變溫吸附程序之影響 85
5-2-3 沖洗時間對單塔變溫吸附程序之影響 88
5-3 最佳結果討論 91
5-4 能耗計算 93
第六章、結論 96
符號說明 98
參考文獻 102
附錄A、流速之估算方法 105
附錄B、各數據詳細資料 109
附錄C、吸附塔濃度變化 120
附錄D、吸附塔濃度變化 122
附錄E、吸附塔濃度變化 124
附錄F、吸附塔濃度變化 126
附錄G、吸附塔濃度變化及CO2吸附量 128
參考文獻 [1] IPCC, IPCC special report on carbon dioxide capture and storage, IPCC. Cambridge, United Kingdom and New York, NY, USA, 2005.
[2] P.H. Turnock and R.H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., Vol. 17, pp. 335-342, 1971.
[3] L.H. Shendalman and J.E. Mitchell, “A Study of Heatless Adsorption in the Model System Carbon Dioxide in He(I)”, Chem. Eng. Sci., Vol. 27, pp. 1449-1458, 1972.
[4] E. Glueckauf and J.I. Coates, “Theory of Chromatography, Part IV: The Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation”, J. Chem. Soc., pp. 1315–1321, 1947.
[5] S. Nakao and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, Vol. 16, pp. 114-119, 1983.
[6] M.M. Hassan, D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on a Carbon Molecular Sieve”, Chem. Eng. Sci., Vol. 41, pp. 1333-1343, 1986.
[7] R.T. Yang and S.J. Doong, “Gas Separation by Pressure Swing Adsorption: A Pore- Diffusion Model for Bulk Separation”, AIChE J., Vol. 31, pp. 1829–1842, 1985.
[8] S.J. Doong and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., Vol. 32, pp. 397-410, 1986.
[9] S.J. Doong and R.T. Yang, “Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., Vol. 33, pp. 1045-1049, 1987.
[10] M.M. Hassan, N.S. Raghvan and D.M. Ruthven, “Pressure Swing Air Separation on a Carbon Molecular Sieve. II: Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., Vol. 42, pp. 2037-2043, 1987.
[11] S. Farooq and D.M. Ruthven, “A Comparison of Linear Driving Force and Pore Diffusion-Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., Vol. 45, pp. 107-115, 1990.
[12] X. Xu, C. Song, J.M. Andersen, B.G. Miller and A.W. Scaroni, “Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-capacity adsorbent for Carbon Dioxide Capture”, Energy Fuels, vol. 16, pp. 1463–1469, 2002.
[13] X. Xu, C. Song, B.G. Miller and A.W. Scaroni, “Influence of Moisture on Carbon Dioxide Separation from Gas Mixture by a Nanoporous Adsorbent Based on Polyethylenimine-Modified molecular sieve MCM-41”, Ind. Eng. Chem. Res., vol. 44, pp. 8113–8119, 2005.
[14] X. Ma, X. Wang and C. Song, ““Molecular Basket” Sorbent for Separation of Carbon Dioxide and H2S from Various Gas Streams”, J. Am. Chem. Soc., vol. 131, pp. 5777–5783, 2009.
[15] W.J. Son, J.S. Choi and W.S. Ahn, “Adsorptive Removal of Carbon Dioxide Using Polyethylenimine-Loaded Mesoporous Materials”, Micropor. Mesopor. Mater., vol. 113, pp. 31–40, 2008.
[16] C. Chen, S.T. Yang, W.S. Ahn and R. Ryoo, “Amine-Impregnated Silica Monolith with a Hierarchical Pore Structure: Enhancement of Carbon Dioxide Capture Capacity”, Chem. Commun., vol. 24, pp. 3627–3629, 2009.
[17] N. Tlili, G. Grevillot and C. Vallieres, “Carbon Dioxide Capture and Recovery by Means of TSA and/ or VSA”, Int. J. Greenhouse Gas Control, Vol. 3, pp. 519-527, 2009.
[18] M. G. Plaza, S. Garcia, F. Rubiera, J. J. Pis, C. Pevida, “Post-combustion Carbon Dioxide Capture with a Commercial Activated Carbon: Comparison of Different Regeneration Strategies”, Chem. Eng. J., Vol. 163, pp. 41-47, 2010.
[19] B. Dutcher, H. Adidharma and M. Radosz, “Carbon Filter Process for Flue-Gas Carbon Capture on Carbonaceous Sorbents: Steam-Aided Vacuum Swing Adsorption Option”, Ind. Eng. Chem. Res., Vol. 50, pp. 9696-9703, 2011.
[20] J. Mérel, M. Clausse and F. Meunier, “Carbon Dioxide Capture by Indirect Thermal Swing Adsorption Using 13X Zeolite”, Environ. Prog., Vol. 25, pp. 327–333, 2006.
[21] J. Mérel, M. Clausse and F. Meunier, “Experimental Investigation on Carbon Dioxide Post-Combustion Capture by Indirect Thermal Swing Adsorption Using 13X and 5A Zeolites”, Ind. Eng. Chem. Res., Vol. 47, pp.209–215, 2008.
[22] M. Clausse, J. Mérel and F. Meunier, “Numerical Parametric Study on Carbon Dioxide Capture by Indirect Thermal Swing Adsorption”, Int. J. Greenhouse Gas Control, Vol. 5, pp. 1206- 1213, 2011.
[23] R. Thiruvenkatachari, S. Su, X.X Xiang and J.S. Bae, “Application of Carbon Fibre Composites to Carbon Dioxide Capture From Flue Gas”, Int. J. Greenhouse Gas Control, Vol. 13, pp. 191-200, 2013
[24] D.M. Ruthven, Principles of Adsorption and Adsorption Processes, Wiley, New York, 1984.
[25] J.M. Smith, H.C. Van Ness and M.M. Abbott, Chemical Engineering Thermodynamics, Sixth Edition, McGraw-Hill, New York, 2001.
[26] C.Y. Wen and L.T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[27] R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, Second Edition, Wiley, New York, 2007.
[28] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients”, J. Gas Chromatogr., Vol. 3, pp. 222-227, 1965.
[29] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients”, Ind. Eng. Chem. Res., Vol. 58, pp. 18-27, 1966.
[30] W.L. McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering, Seventh Edition, McGraw-Hill Inc., New York, 2005.
[31] W.H. McAdams, Heat Transmission, Third Edition, McGraw-Hill Inc., New York, 1954.
[32] Y.A. Cengel and M.A. Boles, Thermodynamics: An Engineering Approach, Fifth Edition, Mcgraw-Hill Inc., New York, 2004
[33] M. Zaman and J. H. Lee, “Carbon Capture from Stationary Power Generation Sources: A Review of the Current Status of the Technologies”, Korean J. Chem. Eng., Vol. 30, pp. 1497-1526, 2013.
指導教授 周正堂(Cheng-tung Chou) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明