博碩士論文 101324036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.234.143.26
姓名 紀卉彥(Hui-yen Chi)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 自組裝嵌段共聚高分子/小分子混成奈米浮閘極記憶體:元件製備及效能評估
(Self-Assembly Block Copolymers/Small Molecules Hybrid Nano-Floating Gate Memory: Device Fabrication and Performance Evaluation.)
相關論文
★ 硫碳鏈聯噻吩環小分子半導體及高介電常數TiOX/SiOX介電層製備低電壓場效應光電晶體元件★ 高介電常數TiOX/SiOX介電層製備低電壓場效應 電晶體元件
★ 利用可溶液製程之含硫碳鏈聯噻吩小分子製作高效能有機場效應電晶體★ 以噴塗技術沉積有機半導體薄膜:形貌分析及其於有機場效應電晶體元件應用
★ 利用溶液製程製作不同次結構之併環噻吩小分子高效能有機場效應電晶體★ 利用超音波噴塗技術製備鈣鈦礦薄膜於太陽能 電池元件之應用
★ 利用溶液剪切力塗佈法製作高效能DTTRQ小分子 N 型有機場效電晶體元件★ 用於高性能n型有機薄膜晶體管的溶液 - 二亞甲基取代的醌基二炔基噻吩(DTDSTQ)基小分子
★ 利用溶液剪切力塗佈法製備高分子與小分子混摻之有機場效電晶體元件★ 利用兩步驟超音波噴塗技術製備平面型p-i-n結構鈣鈦礦太陽能電池元件之應用
★ 透明氧化物薄膜電晶體與電晶體式記憶體之分析與應用★ 以含硫碳鏈並?吩環小分子半導體材料利用溶液剪切力塗佈法製作高性能有機場效應電晶體
★ 剪切力溶液製程應用於高效能有機薄膜電晶體:含硒碳鏈聯?吩小分子半導體材料★ 利用超音波噴塗技術製備混合有機陽離子鈣鈦礦 太陽能電池
★ 超音波噴塗法製備鈣鈦礦薄膜並探討添加劑對薄膜形貌及其太陽能電池元件光伏表現之影響★ 超音波噴塗技術結合多通道注射幫浦進料調控系統製備混合鹵素鈣鈦礦太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用poly(styrene-block-4-vinylpyridine)(PS-b-P4VP)嵌段共聚高分子及ferrocenemethanol(FM)小分子混成材料所形成之自組裝超分子結構製作有機高分子奈米浮閘極電晶體式記憶體元件中之電荷捕捉層,並以pentacene為有機半導體層製作於SiO2/Si基板上。因PS-b-P4VP嵌段共聚高分子以自組裝方式形成不同奈米微結構(如球狀、柱狀、層狀),且FM小分子及嵌段共聚高分子中P4VP鏈段產生氫鍵鍵結,使小分子間彼此不聚集,易分散於特定P4VP高分子鏈段結構內。在此探討調控混成材料之不同薄膜微結構形貌對記憶體元件效能影響。此外並可藉由控制混摻小分子摻入量及嵌段共聚高分子鏈段比例使記憶體元件達最佳化表現。
摘要(英) Organic nano-floating gate memory devices were fabricated using self-assembly supramolecular block copolymer hybrid thin films of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) and ferrocenemethanol (FM) small molecules as charge trapping layer, and pentacene as organic semiconductor on SiO2/Si substrate. The FM small molecules selectively hydrogen bonded with pyridine moieties of PS-b-P4VP block copolymer can be well dispersed within P4VP microdomain without significant aggregation. The nanoscale thin film morphologies and memory characteristics can be fully optimized and compared depending on the loading ratio of small molecules and the segment ratio of block copolymers.
關鍵字(中) ★ 嵌段高分子
★ 自組裝
★ 記憶體
★ 非揮發性
★ 浮閘極
關鍵字(英) ★ block copolymers
★ self-assemble
★ memory
★ nonvolatile
★ floating gate
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1-1 前言 1
1-2 記憶體簡介 1
1-3 有機高分子記憶體 3
1-3-1 電容式記憶體 3
1-3-2 電阻式記憶體 5
1-3-3 電晶體式記憶體 9
1-3-3-1 浮閘極有機記憶體 14
1-3-3-2 電荷捕捉有機記憶體 24
1-3-3-3 鐵電有機記憶體 28
1-4 嵌段共聚物 29
1-4-1 嵌段共聚物自組裝行為 29
1-4-2 超分子共聚物自組裝行為 31
1-5 研究動機 36
第二章 實驗方法 39
2-1 實驗藥品 39
2-2 實驗儀器及設備 40
2-3 超分子薄膜製備 40
2-4 溶劑退火裝置 41
2-5 元件製備 42
2-6 元件電性量測 43
2-7 顯微影像觀察 43
2-8 低掠角小角度X光散射分析 43
第三章 結果與討論 44
3-1 電荷捕捉層薄膜結構分析 44
3-1-1 傅立葉轉換紅外線光譜分析 44
3-1-2 原子力顯微鏡分析 45
3-1-3 低掠角小角度X光散射分析 53
3-2 記憶體電性分析 58
3-2-1 輸出特性曲線圖 58
3-2-2 轉移特性曲線圖 59
3-2-3 寫入-讀取-消除-讀取迴圈 68
3-2-4 滯留時間 70
3-2-5 電荷捕捉機制 71
第四章 結論及未來展望 74
參考文獻 77

參考文獻 參考文獻
1. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, Prog. Polym. Sci., 2008, 33, 917.
2. R. C. G. Naber, K. Asadi, P. W. M. Blom, D. M. de Leeuw and B. de Boer, Adv. Mater., 2010, 22, 933.
3. H. S. Nalwa, Ferroelectric Polymers: Chemistry: Physics, and Applications, CRC Press, 1995.
4. A. Troisi and M. A. Ratner, J. Am. Chem. Soc., 2002, 124, 14528.
5. J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma and Y. Yang, Nat. Mater., 2004, 3, 918.
6. Q.-D. Ling, F.-C. Chang, Y. Song, C.-X. Zhu, D.-J. Liaw, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, J. Am. Chem. Soc., 2006, 128, 8732.
7. X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu and Y.-X. Li, Adv. Mater., 2010, 22, 1731.
8. S. J. Liu, Z. H. Lin, Q. Zhao, Y. Ma, H. F. Shi, M. D. Yi, Q. D. Ling, Q. L. Fan, C. X. Zhu and E. T. Kang, Adv. Funct. Mater., 2011, 21, 979.
9. B. Zhang, Y. Chen, G. Liu, L.-Q. Xu, J. Chen, C.-X. Zhu, K.-G. Neoh and E.-T. Kang, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 378.
10. B. Zhang, Y. Chen, Y. Ren, L.-Q. Xu, G. Liu, E.-T. Kang, C. Wang, C.-X. Zhu and K.-G. Neoh, Chem. Eur. J., 2013, 19, 6265.
11. Q.-D. Ling, D.-J. Liaw, E. Y.-H. Teo, C. Zhu, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, Polymer, 2007, 48, 5182.
12. Q.-D. Ling, Y. Song, S.-L. Lim, E. Y.-H. Teo, Y.-P. Tan, C. Zhu, D. S. H. Chan, D.-L. Kwong, E.-T. Kang and K.-G. Neoh, Angew. Chem. Int. Ed., 2006, 45, 2947.
13. G. Liu, Q.-D. Ling, E.-T. Kang, K.-G. Neoh, D.-J. Liaw, F.-C. Chang, C.-X. Zhu and D. S.-H. Chan, J. Appl. Phys., 2007, 102.
14. J. Oelerich, D. Huemmer, M. Weseloh and S. Baranovskii, Appl. Phys. Lett., 2010, 97, 143302.
15. X.-D. Zhuang, Y. Chen, B.-X. Li, D.-G. Ma, B. Zhang and Y. Li, Chem. Mater., 2010, 22, 4455.
16. Y. K. Fang, C. L. Liu, C. Li, C. J. Lin, R. Mezzenga and W. C. Chen, Adv. Funct. Mater., 2010, 20, 3012.
17. L. Li, Q.-D. Ling, S.-L. Lim, Y.-P. Tan, C. Zhu, D. S. H. Chan, E.-T. Kang and K.-G. Neoh, Org. Electron., 2007, 8, 401.
18. Y.-L. Liu, Q.-D. Ling, E.-T. Kang, K.-G. Neoh, D.-J. Liaw, K.-L. Wang, W.-T. Liou, C.-X. Zhu and D. S.-H. Chan, J. Appl. Phys., 2009, 105, 044501.
19. T. J. Lee, C.-W. Chang, S. G. Hahm, K. Kim, S. Park, D. M. Kim, J. Kim, W.-S. Kwon, G.-S. Liou and M. Ree, Nanotechnology, 2009, 20, 135204.
20. Y.-C. Chiu, I. Otsuka, S. Halila, R. Borsali and W.-C. Chen, Adv. Funct. Mater., 2014, 24, 4240.
21. C. S. Karthikeyan, H. Wietasch and M. Thelakkat, Adv. Mater., 2007, 19, 1091.
22. M. Sommer, S. M. Lindner and M. Thelakkat, Adv. Funct. Mater., 2007, 17, 1493.
23. C. P. Li, K. H. Wei and J. Y. Huang, Angew. Chem., 2006, 118, 1477.
24. Y.-K. Fang, C.-L. Liu, G.-Y. Yang, P.-C. Chen and W.-C. Chen, Macromolecules, 2011, 44, 2604.
25. J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma and Y. Yang, Nat. Mater., 2004, 3, 918.
26. C. W. Chu, J. Ouyang, J. H. Tseng and Y. Yang, Adv. Mater., 2005, 17, 1440.
27. J. Liu, Z. Yin, X. Cao, F. Zhao, A. Lin, L. Xie, Q. Fan, F. Boey, H. Zhang and W. Huang, ACS Nano, 2010, 4, 3987.
28. J.-C. Hsu, C.-L. Liu, W.-C. Chen, K. Sugiyama and A. Hirao, Macromol. Rapid Commun., 2011, 32, 528.
29. G. Liu, Q.-D. Ling, E. Y. H. Teo, C.-X. Zhu, D. S.-H. Chan, K.-G. Neoh and E.-T. Kang, ACS Nano, 2009, 3, 1929.
30. P. Heremans, G. H. Gelinck, R. Müller, K.-J. Baeg, D.-Y. Kim and Y.-Y. Noh, Chem. Mater., 2010, 23, 341.
31. C.-L. Liu and W.-C. Chen, Polym. Chem., 2011, 2, 2169.
32. Y. Guo, G. Yu and Y. Liu, Adv. Mater., 2010, 22, 4427.
33. P.-Z. Jian, Y.-C. Chiu, H.-S. Sun, T.-Y. Chen, W.-C. Chen and S.-H. Tung, ACS Appl. Mater. Interfaces, 2014, 6, 5506.
34. M. Burkhardt, A. Jedaa, M. Novak, A. Ebel, K. Voïtchovsky, F. Stellacci, A. Hirsch and M. Halik, Adv. Mater., 2010, 22, 2525.
35. C.-W. Tseng, D.-C. Huang and Y.-T. Tao, ACS Appl. Mater. Interfaces, 2013, 5, 9528.
36. S.-T. Han, Y. Zhou, Z.-X. Xu, V. A. L. Roy and T. F. Hung, J. Mater. Chem., 2011, 21, 14575.
37. Y. Zhou, S.-T. Han, Z.-X. Xu and V. A. L. Roy, Adv. Mater., 2012, 24, 1247.
38. K.-J. Baeg, Y.-Y. Noh, H. Sirringhaus and D.-Y. Kim, Adv. Funct. Mater., 2010, 20, 224.
39. W. L. Leong, P. S. Lee, A. Lohani, Y. M. Lam, T. Chen, S. Zhang, A. Dodabalapur and S. G. Mhaisalkar, Adv. Mater., 2008, 20, 2325.
40. S.-T. Han, Y. Zhou, Z.-X. Xu, L.-B. Huang, X.-B. Yang and V. A. L. Roy, Adv. Mater., 2012, 24, 3556.
41. R. K. Gupta, G. Ying, M. P. Srinivasan and P. S. Lee, J. Phys. Chem. B, 2012, 116, 9784.
42. Q. Wei, Y. Lin, E. R. Anderson, A. L. Briseno, S. P. Gido and J. J. Watkins, ACS Nano, 2012, 6, 1188.
43. H.-C. Chang, C.-L. Liu and W.-C. Chen, ACS Appl. Mater. Interfaces, 2013, 5, 13180.
44. Y.-C. Chen, C.-Y. Huang, H.-C. Yu and Y.-K. Su, J. Appl. Phys., 2012, 112, 034518.
45. T. T. Dao, T. Matsushima and H. Murata, Org. Electron., 2012, 13, 2709.
46. S. M. Kim, E. B. Song, S. Lee, J. Zhu, D. H. Seo, M. Mecklenburg, S. Seo and K. L. Wang, ACS Nano, 2012, 6, 7879.
47. K.-J. Baeg, D. Khim, D.-Y. Kim, S.-W. Jung, J. B. Koo and Y.-Y. Noh, Jpn. J. Appl. Phys., 2010, 49, 05EB01.
48. J.-C. Chen, C.-L. Liu, Y.-S. Sun, S.-H. Tung and W.-C. Chen, Soft Matter, 2012, 8, 526.
49. S.-T. Han, Y. Zhou, C. Wang, L. He, W. Zhang and V. A. L. Roy, Adv. Mater., 2013, 25, 872.
50. A. Rani, J.-M. Song, M. Jung Lee and J.-S. Lee, Appl. Phys. Lett., 2012, 101.
51. S.-T. Han, Y. Zhou, Q. D. Yang, L. Zhou, L.-B. Huang, Y. Yan, C.-S. Lee and V. A. L. Roy, ACS Nano, 2014, 8, 1923.
52. X. Gao, X.-J. She, C.-H. Liu, Q.-J. Sun, J. Liu and S.-D. Wang, Appl. Phys. Lett., 2013, 102.
53. Y. Park, D. Gupta, C. Lee and Y. Hong, Org. Electron., 2012, 13, 2887.
54. K. Chaewon, S. Ji-Min, L. Jang-Sik and L. Mi Jung, Nanotechnology, 2014, 25, 014016.
55. Y.-H. Chou, Y.-C. Chiu and W.-C. Chen, Chem. Commun., 2014, 50, 3217.
56. Q.-D. Ling, E.-T. Kang, K.-G. Neoh, Y. Chen, X.-D. Zhuang, C. Zhu and D. S. H. Chan, Appl. Phys. Lett., 2008, 92.
57. W. L. Leong, N. Mathews, S. Mhaisalkar, Y. M. Lam, T. P. Chen and P. S. Lee, J. Mater. Chem., 2009, 19, 7354.
58. W. Wu, H. Zhang, Y. Wang, S. Ye, Y. Guo, C. Di, G. Yu, D. Zhu and Y. Liu, Adv. Funct. Mater., 2008, 18, 2593.
59. C.-M. Chen, C.-M. Liu, K.-H. Wei, U. S. Jeng and C.-H. Su, J. Mater. Chem., 2012, 22, 454.
60. K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee and D. Y. Kim, Adv. Mater., 2006, 18, 3179.
61. K.-J. Baeg, Y.-Y. Noh, J. Ghim, B. Lim and D.-Y. Kim, Adv. Funct. Mater., 2008, 18, 3678.
62. Y.-C. Chiu, C.-L. Liu, W.-Y. Lee, Y. Chen, T. Kakuchi and W.-C. Chen, NPG Asia Mater., 2013, 5, e35.
63. C.-M. Chen, C.-M. Liu, M.-C. Tsai, H.-C. Chen and K.-H. Wei, J. Mater. Chem. C, 2013, 1, 2328.
64. Y. Noriyoshi, Jpn. J. Appl. Phys., 1986, 25, 590.
65. H.-C. Kim, S.-M. Park and W. D. Hinsberg, Chem. Rev., 2009, 110, 146.
66. F. S. Bates and G. H. Fredrickson, Phys. Today, 2008, 52, 32.
67. F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem., 1990, 41, 525.
68. L. Leibler, Macromolecules, 1980, 13, 1602.
69. A. N. Semenov, Macromolecules, 1992, 25, 4967.
70. T. Ohta and K. Kawasaki, Macromolecules, 1986, 19, 2621.
71. R. A. Segalman, Mater. Sci. Eng. R-Rep., 2005, 48, 191.
72. S.-H. Tung and T. Xu, Macromolecules, 2009, 42, 5761.
73. R. Mäki-Ontto, K. de Moel, W. de Odorico, J. Ruokolainen, M. Stamm, G. ten Brinke and O. Ikkala, Adv. Mater., 2001, 13, 117.
74. S.-H. Tung, N. C. Kalarickal, J. W. Mays and T. Xu, Macromolecules, 2008, 41, 6453.
75. C.-H. Lee and S.-H. Tung, Soft Matter, 2011, 7, 5660.
76. J. Ruokolainen, M. Saariaho, O. Ikkala, G. ten Brinke, E. L. Thomas, M. Torkkeli and R. Serimaa, Macromolecules, 1999, 32, 1152.
77. A. Sidorenko, I. Tokarev, S. Minko and M. Stamm, J. Am. Chem. Soc., 2003, 125, 12211.
78. B. K. Kuila and M. Stamm, J. Mater. Chem., 2011, 21, 14127.
79. B. Nandan, M. K. Vyas, M. Böhme and M. Stamm, Macromolecules, 2010, 43, 2463.
80. B. K. Kuila and M. Stamm, Macromol. Symp., 2011, 303, 85.
81. B. K. Kuila, E. B. Gowd and M. Stamm, Macromolecules, 2010, 43, 7713.
82. S. Dailey, M. Halim, E. Rebourt, L. Horsburgh, I. Samuel and A. Monkman, J. Phys.: Condens. Matter, 1998, 10, 5171.

指導教授 劉振良(Cheng-liang Liu) 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明