博碩士論文 101324037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.234.143.26
姓名 楊善淳(Shan-chun Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究成功利用聚苯乙烯球奈米球微影術(Nanosphere Lithography,NSL)結合金屬催化化學蝕刻法在(100)以及(111)矽晶圓上成功製備大面積準直排列規則有序矽晶奈米線陣列,此矽晶奈米線陣列的直徑以及長度可藉由氧氣電漿處理以及濕式蝕刻的時間來妥善調控,並在製備完成矽晶奈米線後,以金屬催化無電鍍蝕刻法,藉由銀離子的還原來修飾矽晶奈米線的形貌,將平頭矽晶奈米線轉變成尖針狀的形貌,藉由實驗的觀察發現尖針狀的樣貌由來是由於疏水性矽晶奈米線頂部的上方以及側壁蝕刻所造成,而後藉由傾斜角度的方法鍍製一層90nm的鎳金屬於矽晶奈米線側壁,進行不同時間以及溫度的熱退火處理,發現在經500oC 2小時以及700oC 2小時的熱處理後可獲得鎳金屬原子擴散一半的矽晶奈米線以及完全反應的矽化物奈米線,此矽化物的區域在半根反應時呈現(111)鋸齒狀刻面,經過穿透式電子顯微鏡以及選區電子繞射圖譜解析後得知鎳矽化物相為二矽化鎳相(NiSi2)。此反應在(111)晶圓上製備出來的矽晶奈米線會由於奈米線軸向為[111]的關係,而在側壁形成垂直於矽晶奈米線的三角形刻面。而此研究還針對矽化物奈米線進行場發射性質量測,可假設形貌不變的條件下,平頭矽晶奈米線以及尖頭矽晶奈米線之場增強因子不會改變,可在矽化反應之後獲得提早啟動的電場以及被降低的有效功函數(Effective Work Function),啟動電場由5.56Vum-1提早至約1.2Vum-1而有效功函數由5.0eV下降至2.0eV左右。
本研究另在傾角鍍膜中發現可利用側壁鍍膜的陰影做為有效的遮罩來製備新穎的平躺奈米線結構,傾角鍍膜鍍製適當厚度的二氧化矽膜後,在凹槽當中鍍製一層金屬薄膜,而後結合掀離方法,便可獲得平躺的金屬奈米線,是一簡易方便且成本低廉的微影技術。
摘要(英) In this study, we demonstrated that large-area arrays of vertically aligned Si nanowires were successfully fabricated on (001)Si and (111)Si substrates by using the PS nanosphere lithography combined with the Au-assisted selective chemical etching process. The diameter and length of these silicon nanowires are adjustable through O2 plasma treatment and wet etching time. The morphology of the silicon nanowires can be converted from flat top to sharp top by metal catalyzed electroless deposition etching method through the reduction of silver. In this research, we noticed that thin kind of etching process is due to the hydrophobic etching on the top and the side wall of the silicon nanowires. Through tilting angle deposition of 90nm Ni and 500oc, 700oC 2hr N2 annealing, we can obtain half silicidation and fully silicidation in the silicon nanowires. Through TEM observation and the SAED analysis, we noticed that the triangle facets are (111) planes of the Nickel disilicide phase (NiSi2). These facet will be perpendicular to the side wall of the [111] silicon nanowires due to the difference of the orientation. We also demonstrated the research of the field emission property of the silicide wire. According to the changeless morphology, the beta enhancement factor is supposed to be unchanged. So we can tell that, through silicidation, the turn on field was reduced from 5.56Vum-1 to 1.2Vum-1 ,and the effective work function was reduced from 5.0eV to about 2.0eV.
Another interesting issue in this research is about utilizing the shadow generated from the tilting angle process as the mask to fabricate the horizontally aligned metal wires. Through the deposition of proper thickness of SiO2 and lift off technique, we can obtain 20nm height of Ni wire horizontally aligned on the silicon wafer.
關鍵字(中) ★ 矽晶奈米線
★ 鎳矽化物
★ 場發射性質
關鍵字(英)
論文目次 中文摘要..............................................................I
英文摘要.............................................................II
致謝..................................................................III
目錄...................................................................IV

第一章 前言及文獻回顧.........................................1
1-1前言...................................................................1
1-2矽單晶奈米線製備方法...................................................3
1-2-1氣-液-固法成長矽晶奈米線...........................................3
1-2-2固-液-固法成長矽晶奈米線...........................................5
1-2-3氧催化成長法.......................................................5
1-2-4反應性離子蝕刻法成長矽晶奈米線.....................................6
1-2-5金屬催化無電鍍蝕刻法成長矽晶奈米線.................................7
1-2-6金屬催化化學蝕刻法成長矽晶奈米線...................................8
1-3奈米球微影技術........................................................10
1-3-1奈米球的自組裝行為................................................10
1-3-2奈米球微影術的發展................................................11
1-4奈米球微影術結合金屬催化化學蝕刻法製備矽單晶奈米線....................12
1-5不同軸向之矽單晶奈米線製備............................................13
1-6矽晶基材蝕刻反應......................................................14
1-6-1有機以及鹼性溶液蝕刻矽晶基材......................................14
1-6-2金屬催化無電鍍銀蝕刻矽晶奈米線....................................15
1-7金屬矽化物............................................................16
1-7-1金屬矽化物之製程與應用............................................16
1-7-2薄膜鎳金屬矽化物. ................................................18
1-7-3鎳金屬矽化物奈米線................................................18
1-8水滴接觸角之相關理論..................................................19
1-9場發射電極元件........................................................21
1-9-1場發射相關理論....................................................21
1-9-2 矽晶基材的場發射效應研究.........................................22
1-10水平排列金屬奈米線陣列製備...........................................24
1-11研究動機及目標.......................................................25

第二章 實驗步驟及儀器設備..................................26
2-1實驗步驟..............................................................26
2-1-1矽晶基材使用前處理................................................26
2-1-2奈米球陣列模板製備................................................26
2-1-3氧氣電漿調控奈米球陣列模板之尺寸..................................27
2-1-4金屬薄膜蒸鍍......................................................27
2-1-5化學濕式蝕刻製備不同軸向之矽單晶奈米線陣列........................27
2-1-6金屬催化無電鍍蝕刻法修飾矽單晶奈米線..............................28
2-1-7熱氧化法修飾矽單晶奈米線之線寬....................................28
2-1-8準直鎳矽化物單晶奈米線陣列製備....................................29
2-1-9水平排列金屬奈米線製備............................................29
2-2試片分析..............................................................30
2-2-1掃描式電子顯微鏡..................................................30
2-2-2穿透式電子顯微鏡..................................................31
2-2-3真空場發射性質量測系統............................................31
2-2-5影像式水滴接觸角量測儀............................................32

第三章 結果與討論.............................................33
3-1聚苯乙烯奈米球模板製備................................................33
3-1-1單層聚苯乙烯奈米球模板製備.......................................33
3-1-2 經氧氣電漿蝕刻調控尺寸的奈米球模板..............................33
3-2製備不同晶面矽單晶奈米線陣列..........................................34
3-3以金屬催化無電鍍方式製備尖針狀矽單晶奈米線............................36
3-4矽化物奈米線製備......................................................38
3-4-1[100]成長方向平頂以及尖針狀矽化物奈米線製備......................38
3-4-2[111]成長方向矽化物奈米線製備....................................43
3-4-3小尺度的矽化物奈米線相轉變行為探討...............................44
3-5矽晶奈米線以及矽化物奈米線之場發射性質量測與探討。....................45
3-6接觸角量測分析........................................................46
3-6-1尖針化之矽晶奈米線的水滴接觸角變化................................46
3-6-2金屬矽化物奈米線之水滴接觸角變化..................................47
3-7二氧化矽膜遮罩製備大面積水平排列奈米線陣列。..........................48

第四章 結論與未來展望......................................50
參考文獻............................................................52
圖目錄...............................................................62
參考文獻 [1] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics 38 (1965) 56-59.
[2] Chi, Y. C. and J. H. Chao, “Absence of a ferromagnetic phase in pure Ge quantum dots and Ge/SiO2 multilayer films,” Journal of Magnetism and Magnetic Materials 363 (2014) 108-113.
[3] Jie Chen, Shaohua Shen, Penghui Guo, Meng Wang, Po Wu, Xixi Wang, Liejin Guo, “In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production,” Applied Catalysis B: Environmental 152-153 (2014) 335-341.
[4] SHENG TONG, ELI J. FINE, YANNI LIN, THOMAS J. CRADICK, and GANG BAO, “Nanomedicine: Tiny Particles and Machines Give Huge Gains,” Annals of Biomedical Engineering 42 (2013) 243-259.
[5] Long Chen, Keli Yang, Haitao Liu, Xiaolai Wang, “Carbon nanotube supported Pd catalyst for liquid-phase hydrodehalogenation of bromobenzene,” Carbon 46 (2008) 2137-2139.
[6] Huixin Wang, BaofuHu, LideZhang, MingLi, ErguangJa, Zhenshen Liu, “Enhanced structural ordering and coercivity in FePt nanowire arrays by addition of Zn.” Journal of Magnetism and Magnetic Materials 362 (2014) 47-51.
[7] Sanjay K Srivastava, Dinesh Kumar, S W Schmitt, K N Sood, S H Christiansen, P K Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology 25 (2014) 175601.
[8] Uuriintuya Dembereldorj, Seon Young Choi, Erdene-Ochir Ganbold, Nam Woong Song, Doseok Kim, Jaebum Choo, So Yeong Lee, Sehun Kim, Sang-Woo Joo, “Gold Nanorod-Assembled PEGylated Graphene-Oxide Nanocomposites for Photothermal Cancer Therapy.” Photochemistry and Photobiology 90 (2014) 659-666.
[9] Shih-Hsien Huang, Sheng-Chen Twan, Shao-Liang Cheng, Tu Lee, Jung-Chih Hu, Lien-Tai Chen, Sheng-Wei Lee, “Influence of Al addition on phase transformation and thermal stability of nickel silicides on Si(001).” Journal of Alloys and Compounds 586 (2014) S362-S367.
[10] Wojciech Lisowski, Ewa Grzanka, Janusz W. Sobczak, Mirosław Krawczyk, Aleksander Jablonski, Robert Czernecki, Michał Leszczyn´ ski, Tadeusz Suski, “ XPS method as a useful tool for studies of quantum well epitaxial materials: Chemical composition and thermal stability of InGaN/GaN multilayers,” Journal of Alloys and Compounds 597 (2014) 181-187.
[11] Jung-Fu Hsu, Bohr-Ran Huang, Chien-Sheng Huang and Hsin-Li Chen, “ Silicon Nanowires as PH Sensor,” Japanese Journal of Applied Physics 4B (2005) 2626–2629
[12] Yoni Engel, Roey Elnathan, Alexander Pevzner, Guy Davidi, Eli Flaxer, Fernando Patolsky, “Supersensitive Detection of Explosives by Silicon Nanowire Arrays,” Angew Chem. 49 (2010) 6830-6835.
[13] X.T. Zhou, J.Q. Hu, C.P. Li, D.D.D. Ma, C.S. Lee, S.T. Lee, “Silicon nanowires as chemical sensors,” Chemical Physics Letters 369 (2003) 220-224.
[14] Kui-Qing Peng, Xin Wang, Shuit-Tong Lee, “Gas sensing properties of single crystalline porous silicon nanowires,” Applied Physics Letters 95 (2009) 243112.
[15] Jee-Yeon Kim, Jae-Hyuk Ahn, Dong-Il Moon, Tae Jung Park, Sang Yup Lee, Yang-Kyu Choi, “Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor,” Biosensors and Bioelectronics 55 (2014) 162-167.
[16] Kibum Kang, Hyun-Seung Lee, Dong-Wook Han, Gil-Sung Kim, Donghun Lee, “Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery,” Applied Physics Letters 96 (2010) 053110.
[17] CANDACE K. CHAN, HAILIN PENG, GAO LIU, KEVIN MCILWRATH, XIAO FENG ZHANG, ROBERT A. HUGGINS, YI CUI, “High-performance lithium battery anodes using silicon nanowires,” Nature Nanotechnology 3 (2007) 31-35.
[18] Hung-Chi Wu, Hung-Yin Tsai, Hsin-Tien Chiu, Chi-Young Lee, “Silicon Rice-Straw Array Emitters and Their Superior Electron Field Emission,” Applied Materials & Interfaces 2 (2010) 3285-3288.
[19] Yu-Fen Tzeng, Hung-Chi Wu, Pei-Sun Sheng, Nyan-Hwa Tai, Hsin Tien Chiu, Chi Young Lee, I-Nan Lin, “Stacked Silicon Nanowires with Improved Field Enhancement Factor,” Applied Materials & Interfaces 2 (2010) 331-334.
[20] Hung-Chi Wu, Tsung-Yen Tsai, Fu-Hsuan Chu, Nyan-Hwa Tai, Heh-Nan Lin, Hsin-Tien Chiu, Chi-Young Lee, “Electron Field Emission Properties of Nanomaterials on Rough Silicon Rods,” J. Phys. Chem. 114 (2010) 130–133
[21] Erik Garnett, Peidong Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Letters 10 (2010) 1082-1087.
[22] Kuiqing Peng, Xin Wang, Shuit-Tong Lee, “Silicon nanowire array photoelectrochemical solar cells,” Applied Physics Letters 92 (2008) 163103.
[23] R. S. Wagner, W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth," Applied Physics Letters 4 (1964) 89.
[24] M. Lu, M.K. Li, L.B. Kong, X.Y. Guo, H.L. Li, “Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties,” Chemical Physics Letters 374 (2003) 542-547.
[25] Martin Hetzel, Alois Lugstein, Clemens Zeiner, Tomasz W´ojcik, Peter Pongratz, Emmerich Bertagnolli, “Ultra-fast vapour–liquid–solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst,” Nanotechnology 22 (2011) 395601.
[26] JIANGTAO HU, TERI WANG ODOM, CHARLES M. LIEBER, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32 (1999) 435-445.
[27] Somilkumar J. Rathi, David J. Smith, Jeff Drucker, “Guided VLS Growth of Epitaxial Lateral Si Nanowires,” Nano Lett. 13 (2013) 3878−3883.
[28] Yong-Hee Park, Jungwon Kim, Hyoungjoon Kim, Ilsoo Kim, Ki-Young Lee, Dongjea Seo, Heon-Jin Choi, Woochul Kim, “Thermal conductivity of VLS-grown rough Si nanowires with various surface roughnesses and diameters,” Applied Physics A 104 (2011) 7-14.
[29] T.W. Ho, F. C.N. Hong, “A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process,” Applied Surface Science 258 (2012) 7989-7996.
[30] Kuiqing Peng, Mingliang Zhang, Aijiang Lu, Ning-Bew Wong, Ruiqin Zhang, Shuit-Tong Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Applied Physics Letters 90 (2007) 163123.
[31] Taeho Moon , Lin Chen , Shinhyun Choi , Chunjoong Kim , Wei Lu, “Efficient Si Nanowire Array Transfer via Bi-Layer Structure Formation Through Metal-Assisted Chemical Etching,” Advanced Functional Materials 24 (2014) 1949-1955.
[32] Shenli Zhang, Xinwei Wang, Hong Liu and Wenzhong Shen, “Controllable light-induced conic structures in silicon nanowire arrays by metal-assisted chemical etching,” Nanotechnology 25 (2014) 025602.
[33] Kong Liu, Shengchun Qu, Furui Tan, Yu Bi, Shudi Lu, Zhanguo Wang, “Ordered silicon nanowires prepared by template-assisted morphological design and metal-assisted chemical etching,” Materials Letters 101 (2013) 96-98.
[34] Zhipeng Huang, Nadine Geyer, Peter Werner, Johannes de Boor, Ulrich Gösele, “Metal-Assisted Chemical Etching of Silicon: A Review,” Advanced Materials 23 (2011) 285-308.
[35] B P Azeredo, J Sadhu, J Ma, K Jacobs, J Kim, K Lee, J H Eraker, X Li, S Sinha, N Fang, P Ferreira, K Hsu, “Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching,” Nanotechnology 24 (2013) 225305.
[36] V. A. Sivakov, G. Bronstrup, B. Pecz, A. Berger, G. Z. Radnoczi, M. Krause, S. H. Christiansen, “Realization of Vertical and Zigzag Single Crystalline Silicon Nanowire Architectures,” J. Phys. Chem. C114 (2010) 3798–3803.
[37] Shih-Yi Chien, Chin-Pao Cheng, Hui-Ling Sung, Yu-Man Shang, “Effects of Silicon Nanowire Array Fabricated by Spontaneous Electrochemical Reaction on Volatile Organic Solvent Sensing,” Nanoelectronics Conference (2011) 1-2.
[38] Jin-Young Jung, Han-Don Um, Sang-Won Jee, Kwang-Tae Park, Jin Ho Bang, Jung-Ho Lee, “Optimal design for antireflective Si nanowire solar cells,” Solar Energy Materials & Solar Cells 112 (2013) 84–90.
[39] S. L. Cheng, C. H. Chung, H. C. Lee, “A Study of the Synthesis, Characterization, and Kinetics of Vertical Silicon Nanowire Arrays on (001)Si Substrates,” Journal of the Electrochemical Society 155 (2008) 711-714.
[40] Baris Ozdemir, Mustafa Kulakci, Rasit Turan, and Husnu Emrah Unalan, “Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires,” Nanotechnology 22 (2011) 155606.
[41] Yasushi Kobayashi, Sadao Adachi, “Properties of Si Nanowires Synthesized by Galvanic Cell Reaction,” Japanese Journal of Applied Physics 49 (2010) 075002.
[42] D.P. Yu, C .S. Lee, I. Bello, X.S. Sun, Y.H. Tang, G.W. Zhou, Z.G. Bai, Z. Zhang, S.Q. Feng, “Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature,” Solid State Communications 105 (1998) 403–407.
[43] Y. H. Tang, Y. F. Zhang, N. Wang, C. S. Lee and X. D. Han, “Morphology of Si nanowires synthesized by high-temperature laser ablation,” J. Appl. Phys. 85 (1999) 7981-7983.
[44] Alfredo M. Morales, Charles M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” SCIENCE 279 (1998) 208-211.
[45] N. Fukata, S. Matsushita, N. Okada, J. Chen, T. Sekiguchi, N. Uchida. K. Murakami, “Impurity doping in silicon nanowires synthesized by laser ablation,” Appl. Phys. A93 (2008) 589–592.
[46] S. Merzsch, F. Steib, H. S. Wasisto, A. Stranz, P. Hinze, T. Weimann, E. Peiner, A. Waag , “Production of vertical nanowire resonators by cryogenic-ICP-DRIE,” Microsyst Technol 20 (2014) 759–767.
[47] Jun Nakamura, Kohei Higuchi, Kazusuke Maenaka, “Vertical Si nanowire with ultra-high-aspect-ratio by combined top-down processing technique,” Microsyst Technol 19 (2013) 433–438.
[48] Seulah Lee, Jaehong Yoon, Bonwoong Koo, Dong Hoon Shin, Ja Hoon Koo, Cheol Jin Lee, Young-Woon Kim, Hyungjun Kim, Taeyoon Lee, “Formation of Vertically Aligned Cobalt Silicide Nanowire Arrays Through a Solid-State Reaction,” Nanotechnology IEEE Transactions 12 (2013) 704-711.
[49] Yajun Yang, Guowen Meng, Xianyun Liu, Lide Zhang, Zheng Hu, Chengyu He,
Yemin Hu, “Aligned SiC Porous Nanowire Arrays with Excellent Field Emission Properties Converted from Si Nanowires on Silicon Wafer,” J. Phys. Chem. C112 (2008) 20126–20130.
[50] Yung-Jr Hung, San-Liang Lee, Looi Choon Beng, Hsuan-Chen Chang, Yung-Jui Huang, Kuei-Yi Lee, Ying-Sheng Huang “Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application,” Thin Solid Films 556 (2014) 146–154.
[51] Hsun-Feng Hsu, Jiun-Yu Wang, You-Han Wu, “KOH Etching for Tuning Diameter of Si Nanowire Arrays and Their Field Emission Characteristics,” Journal of the Electrochemical Society 161 (2013) 53-56.
[52] Matthew T. Cole, Kenneth B. K. Teo, Oliver Groening, Laurent Gangloff, Pierre Legagneux, William I. Milne, “Deterministic Cold Cathode Electron Emission from Carbon Nanofibre Arrays. ” Scientific Reports 4 (2014) 1-5.
[53] Jae-Woo Kim, Jin-Woo Jeong, Jun-Tae Kang, Sungyoul Choi, Seungjoon Ahn, Yoon-Ho Song, “Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers,” Nanotechnology 25 (2014) 065201
[54] Chi Li, Shuyi Ding, Wei Lei, Xiaobing Zhang, Baoping Wang, "Enhanced field emission from vertically aligned carbon nanotubes on metal mesh electrode," Applied Surface Science 285 (2013) 505-508.
[55] Indrani Chakraborty, Pushan Ayyub, "Controlled clustering in metal nanorod arrays leads to strongly enhanced field emission characteristics," Nanotechnology 23 (2012) 015704.
[56] Young Joon Hong, Chul-Ho Lee, Jun Beom Park, Sung Jin An, Gyu-Chul Yi, "GaN nanowire/thin film vertical structure p–n junction light-emitting diodes," Applied Physics Letters 103 (2013) 261116.
[57] Xiaoxia Qi, Jian Liang, ChunyanYu, Shufang Ma, Xuguang Liu, BingsheXu, "Facile synthesis of interconnected SiC nanowire networks on silicon substrate," Materials Letters 116 (2014) 68-70.
[58] Chen Zhang, Xiuling Li, "Planar GaAs nanowire tri-gate MOSFETs by vapor-liquid-solid growth Solid-State," Electronics 93 (2014) 40–42.
[59] R. S. Wagner, W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett. 4 (1964) 89-90.
[60] Volker Schmidt, Stephan Senz, Ulrich Go1sele," Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires," Nano Lett. 5 (2005) 931-935.
[61] Yue Wu, Yi Cui, Lynn Huynh, Carl J. Barrelet, David C. Bell, and Charles M. Lieber, "Controlled Growth and Structures of Molecular-Scale Silicon Nanowires," Nano Lett. 4 (2004) 433-436.
[62] H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu, Z.H. Xi, S.Q. Feng, "Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism," Chemical Physics Letters. 323 (2000) 224–228.
[63] D.P. Yu, Y.J. Xing, Q.L. Hang, H.F. Yan, J. Xu, Z.H. Xi, S.Q. Feng, "Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism," Physica E9 (2001) 305-309.
[64] E. K. Lee, B. L. Choi, Y. D. Park, Y. Kuk, S. Y. Kwon, H. J. Kim, “Device Fabrication with Solid–Liquid–Solid Grown Silicon Nanowires,” Nanotechnology 19 (2008) 185701.
[65] Y.Y. Wong, M. Yahaya, M. Mat Salleh, B. Yeop Majlis, “Controlled growth of silicon nanowires synthesized via solid–liquid–solid mechanism,” Science and Technology of Advanced Materials 6 (2005) 330–334.
[66] Xing Ying-Jie, Xi Zhong-He, Yu Da-Peng, Hang Qing-Ling, Yan Han-Fei, Feng Sun-Qi and Xue Zeng-Quan, “Growth of Silicon Nanowires by Heating Si Substrate”, Chinese. Phys.Lett. 19 (1998) 240.
[67] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and growth of Si nanowires from silicon oxide,” PHYSICAL REVIEW B 58 (1998) 24.
[68] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Diameter modification of silicon nanowires by ambient gas,” Applied Physics Letters 75 (1999) 1842.
[69] Kaiping Tai1, Ke Sun1, Bo Huang and Shen J Dillon, “Catalyzed oxidation for nanowire growth,” Nanotechnology 25 (2014) 145603.
[70] R. Q. Zhang, Y. Lifshitz and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires,” Adv. Mater. 15 (2003) 7-8.
[71] T. Wells, M. M. El-Gomati, J. Wood, “Low Temperature Reactive Ion Etching of Silicon with SF6O2 Plasmas,” J. Vac. Sci. Technol. B15 (1997) 397.
[72] A Zeniou, K Ellinas, A Olziersky and E Gogolides, “Ultrahigh aspect ratio Si nanowires fabricated with plasma etching: plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity,” Nanotechnology 25 (2014) 035302.
[73] Si-Young Park,a_ Sandro J. Di Giacomo,b_ R. Anisha, and Paul R. Bergerc, “Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6:C4F8 and self-limiting thermal oxidation on Si substrate,” J. Vac. Sci. Technol. B 28 (2010) 4.
[74] E. Gogolides, S. Grigoropoulos, A. G. Nassiopoulos, “Highly Anisotropic Room-Temperature sub-half-micron Si Reactive Ion Etching using Fluorine only containing gases,” Microelectronic Engineering 27 (1995) 449-452.
[75] S. Merzsch, F. Steib, H. S. Wasisto, A. Stranz, “Production of vertical nanowire resonators by cryogenic‑ICP–DRIE,” Microsyst Technol 20 (2014) 759–767.
[76] H. B. Xu, N Lu, D. P. Qi, Li. Gao, J. Hao, Y. Wang and L. Chi, “Broadband Antireflective Si Nanopillar Arrays Produced by Nanosphere Lithography,” Microelectronic Eng. 86 (2009) 850–852.
[77] J. Yoo, G. Yu, J. Yi, “Large-area Multicrystalline Silicon Solar Cell Fabrication Using Reactive Ion Etching(RIE) ,” Sol. Energ. Mat. Sol. C. 95 (2011) 2–6.
[78] M. A. Tsai, P. C. Tseng, H. C. Chen, H. C. Kuo and P. Yu, “Enhanced Conversion Efficiency of a Crystalline Silicon Solar Cell with Frustum Nanorod Arrays,” Opt. express 19 (2011) S1.
[79] S.L. Cheng, Y.H. Lina, S.W. Lee, H. Chena, “Periodic arrays of nanoporesmade on single-crystalline silicon substrates with a self-assembled lithographic process,” Thin Solid Films 557 (2014) 376–381.
[80] K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14 (2002) 1164-1167.
[81] Yan-Yan Song, Zhi-Da Gao, John J. Kelly, and Xing-Hua Xia, “Galvanic Deposition of Nanostructured Noble-Metal Films on Silicon,” Electrochemical and Solid-State Letters 8 (2005) 10.
[82] K. Peng, Y. Yan, S. Gao and J. Zhu , “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Advanced Functional Materials 13 (2003) 127–132.
[83] K. Q. Peng, Z. P. Huang and J. Zhu, “Fabrication of Large-Area Silicon Nanowire p–n Junction Diode Arrays,” Advanced Materials 16 (2004) 73–76.
[84] Kuiqing Peng, Jing Zhu, “Morphological selection of electroless metal deposits
on silicon in aqueous fluoride solution,” Electrochimica Acta 49 (2004) 2563–2568.
[85] Ming-Liang Zhang, Kui-Qing Peng, Xia Fan, Jian-Sheng Jie, Rui-Qin Zhang,Shuit-Tong Lee, and Ning-Bew Wong, “Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching,” J. Phys. Chem. C 112 (2008)4444-4450.
[86] t. qiu, x.l.wu1, y.f. mei, p.k. chu, g.g. siu, “Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method,” Appl. Phys. A 81 (2005) 669–671.
[87] Zhipeng Huang, Nadine Geyer , Peter Werner, Johannes de Boor, and Ulrich Gösele, “Metal-Assisted Chemical Etching of Silicon: A Review,” Adv. Mater 23 (2011) 285–308.
[88] Firoz Khan, Seong-Ho Baek, and Jae Hyun Kim, “Dependence of Performance of Si Nanowire Solar Cells on Geometry of the Nanowires,” The Scientific World Journal 2014 (2014) 7 .
[89] Han-Don Um, Jin-Young Jung, Hong-Seok Seo, Kwang-Tae Park, Sang-Won Jee, S. A. Moiz, and Jung-Ho Lee, “Silicon Nanowire Array Solar Cell Prepared by Metal-Induced Electroless Etching with a Novel Processing Technology,” Japanese Journal of Applied Physics 49 (2010) 2.
[90] Zhipeng Huang, Xuanxiong Zhang, Manfred Reiche, Lifeng Liu, Woo Lee, Tomohiro Shimizu,nStephan Senz, and Ulrich Go¨sele, “Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching,” NANO LETTERS 8 (2008) 3046-3051.
[91] 91H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver Catalysis in the Fabrication of Silicon Nanowire Arrays,” Nanotechnology 17 (2006) 3768-3774.
[92] Shiming Su, Linhan Lin, Zhengcao Li, Jiayou Feng and Zhengjun Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Research Letters 8 (2013) 405.
[93] Huan Chen, Hui Wang, Xiao-Hong Zhang, Chun-Sing Lee, and Shuit-Tong Lee, “Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles,” Nano Lett. 10 (2010) 864–868.
[94] Jungkil Kim, Hee Han, Young Heon Kim, Suk-Ho Choi, Jae-Cheon Kim, and Woo Lee, “Au/Ag Bilayered Metal Mesh as a Si Etching Catalyst for Controlled
Fabrication of Si Nanowires,” Acs Nano 5 (2011) 3222–3229.
[95] H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver Catalysis in the Fabrication of Silicon Nanowire Arrays,” Nanotechnology 17 (2006) 3768-3774.
[96] GEORGE M. WHrTESIDES, JOHN P. MATHIAS, CHRISTOPHER T. SETO “Molecular Self-assembly and Nanochemistry a Chemical Strategy for the Synthesis of Nanostructures,” Science 254 (1991) 1312-1319.
[97] Marie-Christine Daniel and Didier Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry,Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev. 104 (2004) 293-346.
[98] Frank Caruso, Heinz Lichtenfeld, Michael Giersig, and Helmuth Mo¨hwald, “Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles,” J. Am. Chem. Soc. 120 (1998) 8523-8524.
[99] David J. Kirby , Benjamin D. Smith , and Christine D. Keating, “Microwell-Directed Self-Assembly of Vertical Nanowire Arrays,” Part. Part. Syst. Charact. 31 (2014) 492–499.
[100] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295. (2002).
[101] Younan Xia, Byron Gates, Yadong Yin, and Yu Lu, “Monodispersed Colloidal Spheres Old Materials with New Applications,” Adv. Mater. 12 (2000) 10.
[102] J. Aizenberg, P. V. Braun and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces,” Phys. Rev. Lett. 84 (2000) 2997-3000.
[103] Micheletto, H. Fukuda and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles,” Langmuir 11 (1995) 3333-3336.
[104] J. Rybczynski, U. Ebels and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids and Surfaces A Physicochem. Eng. Aspects, 219 (2003) 1-6.
[105] H. Li, J. Low, K. S. Brown and N. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated with Self-Assembled Nanosphere Template,” IEEE Sensors J.Vol. 8 (2008) 6.
[106] J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[107] A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir 12 (1996) 1303-1311.
[108] Erik Garnett and Peidong Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10 (2010) 1082–1087.
[109] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater. 19 (2007) 744-748.
[110] S. L. Cheng, C. Y. Chen and S. W. Lee, “Kinetic Investigation of the Electrochemical Synthesis of Vertically-Aligned Periodic Arrays of Silicon Nanorods on (001)Si Substrate,” Thin Solid Films 518 (2010) S190–S195.
[111] Bo Sun, Tielin Shi, Wenjun Sheng, and Guanglan Liao, “Controlled Fabrication of Silicon Nanowires via Nanosphere Lithograph and Metal Assisted Chemical Etching,” Journal of Nanoscience and Nanotechnology 13 (2013) 5708–5714.
[112] Xiaocheng Li , Kun Liang, Beng Kang Tay, Edwin H.T. Teo, “Morphology-tunable assembly of periodically aligned Si nanowire and radial pn junction arrays for solar cell applications,” Applied Surface Science 258 (2012) 6169– 6176.
[113] Xing Zhong, Yongquan Qu, Yung-Chen Lin, Lei Liao, and Xiangfeng Duan, “Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires,” ACS Appl. Mater. Interfaces 3 (2011) 261–270.
[114] Zhipeng Huang, Tomohiro Shimizu, Stephan Senz, Zhang Zhang, Nadine Geyer, and Ulrich Go sele, “Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon,” J. Phys. Chem. C 2010, 114, 10683–10690.
[115] Huan Chen, Hui Wang, Xiao-Hong Zhang, Chun-Sing Lee, and Shuit-Tong Lee, “Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles,” Nano Lett. 10 (2010) 864–868.
[116] Kuiqing Peng Mingliang Zhang Aijiang Lu Ning-Bew Wong Ruiqin Zhang and Shuit-Tong Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metalinduced Etching,” APPLIED PHYSICS LETTERS 90 (2007) 163123.
[117] Shih-wei Chang , Vivian P. Chuang , Steven T. Boles , and Carl V. Thompson, “Metal-Catalyzed Etching of Vertically Aligned Polysilicon and Amorphous Silicon Nanowire Arrays by Etching Direction Confinement,” Adv. Funct. Mater. 20 (2010) 4364–4370.
[118] Sindhuja Sridharan, Navakanta Bhat, and K. N. Bhatc, “Silicon surface texturing with a combination of potassium hydroxide and tetra-methyl ammonium hydroxide etching,” APPLIED PHYSICS LETTERS 102 (2013) 021604.
[119] I. Zubel and M. Kramkowska, “Development of Etch Hillocks on Different Si(hkl) Planes in Silicon Anisotropic Etching,” Surf. Sci. 602 (2008) 1712–1721.
[120] Hsun-Feng Hsu,z Jiun-Yu Wang, and You-Han Wu, “KOH Etching for Tuning Diameter of Si Nanowire Arrays and Their Field Emission Characteristics,” Journal of The Electrochemical Society 161 (2014) H53-H56.
[121] J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park and J. H. Lee, “A Strong Antireflective Solar Cell Prepared by Tapering Silicon Nanowires,” Opt. Express. 18 (2010) A286.
[122] Hao Lin, Ho-Yuen Cheung, Fei Xiu, Fengyun Wang, SenPo Yip, Ning Han, TakFu Hung, Jun Zhou, Johnny C. Ho and Chun-Yuen Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A 1 (2013) 9942–9946.
[123] TOHRU MOCHIZUKI, TAKAYA TSUJIMARU, MASAHIRO KASHIWAGI, AND YOSHIO NISHI, “Film Properties of MoSi2 and their Application to SeIf-Aligned MoSi2 Gate MOSFET,” IEEE JOURNAL OF SOLID-STATE CIRCUITS SC-15 (1980) 4.
[124] Jerome B. Lasky, James S. Nakos. Orison J. Cain, and Peter J. Geiss, “Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi, and COS,” IEEE TRANSACTIONS ON ELECTRON DEVICES. 38 (1991) 2 .
[125] H.F. Hsua, H.Y. Chana, T.H. Chena, H.Y. Wua, S.L. Chengb, F.B. Wuc, “Epitaxial growth of uniform NiSi2 layers with atomically flat silicide/Si interface by solid-phase reaction in Ni–P/Si(1 0 0) systems,” Applied Surface Science 257 (2011) 7422–7426.
[126] Jun Lu, Xindong Gao, Shi-Li Zhang, and Lars Hultman, “Crystallization of NiSix in a Body-Centered Cubic Structure during Solid-State Reaction between an Ultrathin Ni Film and Si(001) Substrate at 150−350 °C,” Cryst. Growth Des. 13 (2013) 1801−1806.
[127] Damien Connetablea, Olivier Thomasb,, “First-principles study of nickel-silicides ordered phases,” Journal of Alloys and Compounds 509 (2011) 2639–2644.
[128] Hiroshi Iwaia , Tatsuya Ohgurob, Shun-ichiro Ohmia, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering 60 (2002) 157–169.
[129] Yue Wu1, Jie Xiang, Chen Yang, Wei Lu And Charles M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” NATURE 430 (2004) 1.
[130] G.F. Iriarte , “Growth of nickel silicide (NiSix) nanowires by silane decomposition,” Current Applied Physics 11 (2011) 82-86.
[131] Nur Fatin Farhanah Binti Nazarudin, Siti Nur Azieani Binti Azizan, Saadah Abdul Rahman, Boon Tong Goh, “Growth and structural property studies on NiSi/SiC core-shell nanowires by hot-wire chemical vapor deposition,” Thin Solid Films xxx (2014) xxx–xxx.
[132] Hsun-Feng Hsu, Chun-Hsiang Tseng, and Ting-Hsuan Chen, “Formation of Epitaxial NiSi2 Nanowires on Si(100) Surface by Atomic Force Microscope Nanolithography,” Journal of Nanoscience and Nanotechnology 10 (2010) 4533–4537.
[133] R.N. Wenzel, “SURFACE ROUGHNESS AND CONTACT ANGLE,” J. Phys Chem. 53 (1949) 1466-1467.
[134] A. B. D. CASSIE, “CONTACT ANGLES,” Discuss. Faraday Soc. 3 (1948) 11-16.
[135] R. H. FOWLER, L. NORDHEIM, “Electron Emission in Intense Electric Fields,” Royal Society of London. A119 (1928) 173-181.
[136] Fei Zhao, Guo-an Cheng, Rui-ting Zheng, Dan-dan Zhao, Shao-long Wu, Jian-hua Deng, “Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires,” Nanoscale Research Letters. 6 (2011) 176.
[137] Hyung Soo Uh, Sang Sik Park, “Investigation of Various Metal Silicide Field Emitters and Their Application to Field Emission Display,” Journal of The Electrochemical Society. 150 (2003) H12-H16.
[138] Wei Li, Jiang Zhou, Xian-gao Zhang, Jun Xu, Ling Xu1, Weiming Zhao, Ping Sun, Fengqi Song, JianguoWan, Kunji Chen, “Field emission from a periodic amorphous silicon pillar array fabricated by modified nanosphere lithography,” Nanotechnology 19 (2008) 135308.
[139] Ho-Yen Hsieh, Sheng-Huang Huang, Kao-Fen Liao, Sheng-Kai Su, Chih-Huang Lai, Lih-Juann Chen, “High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties,” Nanotechnology 18 (2007) 505305.
[140] Ling Xu, Wei Li, Jun Xu, Jiang Zhou, Liangcai Wu, Xian-Gao Zhang, Zhongyuan Ma, Kunji Chen,“ Morphology control and electron field emission properties of high-ordered Si nanoarrays fabricated by modified nanosphere lithography,” Applied Surface Science 255 (2009) 5414–5417.
[141] Yuan-Ming Chang, Pin-Hsu Kao, Hung-Ming Tai, Hau-Wei Wang, Chih-Ming Lin, Hsin-Yi Leede, Jenh-Yih Juang, “Enhanced field emission characteristics in metal-coated Si-nanocones,” Phys. Chem. Chem. Phys.15 (2013) 10761-10766.
[142] Hung-Chi Wu, Hung-Yin Tsai, Hsin-Tien Chiu, Chi-Young Lee, “Silicon Rice-Straw Array Emitters and Their Superior Electron Field Emission,” Applied Material and Interfaces 2 (2010) 3285-3288.
[143] Seulah Lee, Jaehong Yoon, Bonwoong Koo, Dong Hoon Shin, Ja Hoon Koo, Cheol Jin Lee, Young-Woon Kim, Hyungjun Kim, Taeyoon Lee, “Formation of Vertically Aligned Cobalt Silicide Nanowire Arrays Through a Solid-State Reaction,” IEEE Transactions on nanotechnology 12 (2013).
[144] Seulah Lee, Jaehong Yoon, Bonwoong Koo, Dong Hoon Shin, Ja Hoon Koo, Cheol Jin Lee, Young-Woon Kim, Hyungjun Kim, Taeyoon Lee, “Formation of Vertically Aligned Cobalt Silicide Nanowire Arrays Through a Solid-State Reaction,” IEEE Transactions on nanotechnology 12 (2013).
[145] Hsun-Feng Hsu,z Jiun-Yu Wang, You-Han Wu, “KOH Etching for Tuning Diameter of Si Nanowire Arrays and Their Field Emission Characteristics,” Journal of The Electrochemical Society. 161(2014) H53-H56.
[146] Xiaodong Zhou, Wolfgang Knoll, Kai Yu Liu, Man Siu Tse, Sharon R. Oh, Nan Zhanga, “Design and fabrication of gold nanostructures with dispersed nanospheres for localized surface plasmon resonance applications,” Journal of Nanophotonics 2 (2008) 023502.
[147] Yu Chen, Yung-Chen Lin, Xing Zhong, Hung-Chieh Cheng, Xiang feng Duan, Yu Huang, “Kinetic Manipulation of Silicide Phase Formation in Si Nanowire Templates,” Nano Lett. (2013).
[148] Tsung-Chieh Cheng, Pai-Yen Chen, Shen-Yao Wu, “Paradox of low field enhancement factor for field emission nanodiodes in relation to quantum screening effects,” Nanoscale Research Letters 7 (2012) 125.
[149] Shao-long Wu, Jian-hua Deng, Ting Zhang, Rui-ting Zheng, Guo-an Cheng , “Tunable synthesis of carbon nanosheet/silicon nanowire hybrids for field emission applications,” Diamond & Related Materials 26 (2012) 83–88.
指導教授 鄭紹良 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明