博碩士論文 101324039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.226.165.234
姓名 林佳逸(Jia-yi Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 重組及培養人類誘導型多能性幹細胞在奈米片段接枝表面
(Reprogramming and Culture of Human Induced Pluripotent Stem Cells on a Substrate with Immobilized Cell Adhesion Peptides)
相關論文
★ 連續式培養系統於接枝具奈米鏈段之熱敏感生物材料控制人類胚胎與誘導多功能幹細胞增生★ 羊水間葉幹細胞培養於細胞外間質寡?嫁接具有硬度/彈性表面的材料,其分化能力及多能性之研究
★ 利用具有特定奈米片段及彈性的生醫材料去除癌症幹細胞★ 人類脂肪幹細胞培養在具有細胞外基質接枝的水凝膠上之多能性與分化能力研究
★ 從人類初始結腸癌組織分離結腸癌細胞和癌症幹細胞為建立病患專一癌細胞株★ 用於人類胚胎幹細胞生長之生醫材料其奈米片段分子之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類誘導型多能性幹細胞由於具有分化成三胚層細胞之能力,在臨床上相當具有潛力用於許多疾病的治療。然而人類誘導型多能性幹細胞由於飼養層具有異種來源,在臨床上發展受到許多限制。使用具有奈米片段表面改質之生醫材料在無飼養層之培養環境下,可以提供具有再現性的培養環境、低成本的培養材料並且不會引入異種汙染源。這些條件將可以改善人類誘導型多能性幹細胞在臨床上之運用。在這篇文章中我們在使用老鼠胚胎纖維母細胞作為飼養層環境下,成功利用具有多能性基因之逆轉錄病毒,將人類脂肪幹細胞誘導成人類誘導型多能性幹細胞。人類誘導型多能性幹細胞群落可以在病毒轉染後第八天觀察到,從一開始種植105個人類脂肪幹細胞,經過誘導後可以在10cm飼養層上總共得到484個群落,而其誘導成多能性幹細胞之效率為0.484%。此外,鹼性磷酸?活性及多能性蛋白指標Oc4,Sox2及SSEA-4都清楚的表現在人類誘導型多能性幹細胞之群落上。
我們同時也利用聚乙烯醇-共-衣康酸之薄膜上接枝奈米片段,建立新的無飼養層之培養系統用於培養人類多能性幹細胞。在這篇研究中,隨著增加由玻連蛋白中找到之寡胜?的濃度,人類多能性幹細胞將表現較高之群落貼附率、較高群落數放大率及較低群落分化率。此外也利用控制聚乙烯醇-共-衣康酸薄膜之交聯時間,調控薄膜之表面軟硬度,從10.3千帕斯卡至30.4千帕斯卡。在這裡使用人類胚胎幹細胞(WA09)培養在具有較硬表面之聚乙烯醇-共-衣康酸細胞培養系統,比起較表面具有較好的表現。另外,在經過數代培養在表面接枝500毫克/毫升濃度之寡胜?在25.3千帕斯卡表面軟硬度之聚乙烯醇-共-衣康酸細胞培養系統,人類胚胎幹細胞群落仍然表現鹼性磷酸?活性及多能性蛋白指標Oct4、Sox2、Nanog、SSEA-4、Tra-1-60及Tra-1-81。這些結果顯示人類多能性幹細胞可以培養在我們的聚乙烯醇-共-衣康酸細胞培養系統,並且維持人類幹細胞之多能性表現。在未來,聚乙烯醇-共-衣康酸細胞培養系統可用作具有無異種來源及無飼養層之培養環境來誘導人類組織細胞形成人類多能性幹細胞。
摘要(英) Human induced pluripotent stem cells (hiPSCs) have significant potential in therapeutic applications for many diseases because they have the specific ability to differentiate into all types of human somatic cells. However, the tentative clinical potential of hiPSCs is restricted by the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. The feeder-free cultures using synthetic biomaterials having nanosegments as stem cell culture materials offer more reproducible culture conditions and lower the cost of production without introducing xenogenic contaminants. These improvements will increase the potential clinical applications of differentiated hiPSCs. Here we report that hiPSCs can be successively generated with usage of a feeder layer of MEFs during generation of hiPSCs by transfection of retrovirus containing pluripotent genes into human adipose-derived stem cells (hADSCs). hiPSC colonies were clearly observed for the cells cultured on MEFs at day 8 after transfection The number of colonies generated on MEFs was 484 per 10 cm dishes, when 105 hADSCs were seeded on the dishes. The efficiency of hiPSC generation on MEFs was 0.484%. Furthermore, the hiPSC colony showed alkali phosphatase activity clearly, and immunofluorescence suggested that the hiPSCs were generated on MEFs expressing pluripotent protein of Oct4, Sox2 and SSEA-4.
At same time, polyvinylalcohol-co-itaconic acid (PVA-IA) films grafted with nanosegment (KGGPQVTRGDVFTMP [cell-binding domain derived from vitronectin, oligoVN] was established for cultivation of human pluripotent stem cells. In this study, with increase the concentration of oligo-VN, hPSCs shown the higher colony attachment ratio, colony expansion fold and lower differentiation ratio. Furthermore, the elasticity of PVA-IA films grafted with oligo-VN was regulated from 10.3 kPa to 30.4kPa by control of crosslinking time of PVA-IA. hESCs (WA09) cultured on PVA-IA culture system with stiffer elasticity of surface (25.3kPa) shown the better performance than the soft one (15.8kPa). Moreover, hESCs (WA09) cultured on PVA-IA films grafted with 500μg/ml oligo-VN with 25.3kPa elasticity of surface for 5 passage shown alkali phosphatase activity and pluripotent protein expression such as Oct4, Sox2, Nanog, SSEA-4, Tra-1-60 and Tra-1-81. This result indicates that hPSCs could be cultured on our PVA-IA culture system and maintain pluripotency of hPSCs. In the future, the PVA-IA culture system could be used to generation of hiPSCs from primary human tissue cells on xenogenic-free and feeder-free conditions.
關鍵字(中) ★ 多能性幹細胞
★ 生醫材料
關鍵字(英) ★ pluripotent stem cell
★ Cell Adhesion Peptides
論文目次 Chapter 1: Introduction 1
1-1 Stem Cells 1
1-1-1 Self Renewal and Lineage Plasticity 2
1-1-2 Totipotency and Nuclear Transfer 3
1-1-3 Pluripotent Stem Cells and Induced Pluripotent Stem Cells 5
1-1-4 Adult Stem Cells 7
1-2 Microenvironment Effect on Human Pluripotent Stem Cells 8
1-2-1 Physical Cues 8
1-2-1-1 Stem Cell Fate Determination by Matrix Elasticity 8
1-2-1-2 How Do Stem Cells Feel Their Environment 9
1-2-2 Chemical Effect 10
1-2-2-1 Effect of Extra Cellular Matrix on Stem Cell Pluripotency 10
1-2-2-2 Chemically Defined Materials for Stem Cell Culture 11
1-3 Reprogramming method 44
1-4 Characterization of Pluripotent Stem Cells 46
1-4-1 Colony formation 46
1-4-2 Alkali phosphatase activity 46
1-4-3 Pluripotent gene Expression 48
1-4-4 Pluripotent protein Expression 48
1-4-5 Differentiation ability 48
1-5 Immunofluorescence 51
Chapter 2: Materials and Methods 53
2-1 Material 53
2-1-1 Cell line 53
2-1-2 Chemical 53
2-1-3 Medium 55
2-2 Cell Isolation 56
2-2-1 Human adipose-derive stem cell (hADSCs) 56
2-2-2 Mouse embryonic fibroblasts (MEFs) 57
2-3 Cell Culture 59
2-3-1 Culture of hADSCs and MEFs 59
2-3-2 Culture of 293FT cell line 59
2-3-2-1 Preparation of 293FT cell culture medium 59
2-3-2-2 Thawing 293FT cell line 59
2-3-3 Culture of human pluripotent stem cell lines 60
2-3-3-1 Feeder-layer culture of pluripotent stem cells 60
2-3-3-2 Feeder-layer free culture of pluripotent stem cells 61
2-3-3-3 Passage of human pluripotent stem cells by using dispase 61
2-3-3-4 Storage of hiPS cells and hES cells 62
2-3-3-5 Thaw frozen stock of hiPS cells and hES cells 63
2-4 Amplification of plasmid 64
2-4-1 Bacteria transformation 64
2-4-2 Plasmid Amplification 64
2-4-3 Plasmid purification 64
2-5 Transfection of 293FT cells 65
2-6 The generation of induced pluripotent stem cells 66
2-7 Quantitative RT-PCR 66
2-7-1 Isolation of total RNA 66
2-7-2 Reverse transcription of mRNA into cDNA 67
2-7-3 Quantitative real time polymerase chain reaction 68
2-8 Immunofluorescence 70
2-9 Colony attachment rate 71
2-10 Colony differentiation rate 72
2-11 Alkaline phosphatase live staining assay 74
2-12 Embryoid body formation 74
2-13 Teratoma formation 75
2-14 Preparation of PVA-IA film 76
2-15 Preparation of PVA-IA coating dish grafted with oligopeptide 77
2-16 XPS analysis of dish surface 78
Chapter 3: Result and Discussion 79
3-1 Reprogramming of hADSCs into hiPSCs 79
3-1-1 Transfection of 293FT cells and generation of retrovirus containing pluripotent gene 79
3-1-2 Transduction of hADSCs into hiPSCs 80
3-1-3 Characterization of hiPSCs derived from hADSCs 82
3-2 Cultivation of hPSCs on PVA-IA films grafted with vitronectin derived oligopeptide 85
3-2-1 Transfer of hESCs from feeder-layer culture system to Matrigel coated dish 85
3-2-3 Characterization of hESCs before cultivation on PVA-IA culture system 86
3-2-4 Cultivation of hESCs on PVA-IA films having different stiffness grafted with vitronectin derived oligopeptide with different concentration 89
3-2-5 Characterization of hESCs after cultivation on PVA-IA culture system .98
Chapter 4: Conclusion 101
Supplement Data 102
Reference 111
參考文獻 1. Andrews, P.W., et al., Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans, 2005. 33(Pt 6): p. 1526-30.
2. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
3. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
4. Martin, M.J., et al., Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med, 2005. 11(2): p. 228-32.
5. Wiedemann, P.M., et al., The future of stem-cell research in Germany. A Delphi study. EMBO Rep, 2004. 5(10): p. 927-31.
6. Diehn, M., R.W. Cho, and M.F. Clarke, Therapeutic implications of the cancer stem cell hypothesis. Semin Radiat Oncol, 2009. 19(2): p. 78-86.
7. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
8. Taylor, R., Human Biotechnology as Social Challenge: An Interdisciplinary Introduction to Bioethics. Human Reproduction and Genetic Ethics, 2010. 14(1): p. 40.
9. Campbell, K.H., et al., Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996. 380(6569): p. 64-6.
10. Palmarini, M., A veterinary twist on pathogen biology. PLoS Pathog, 2007. 3(2): p. e12.
11. Shiels, P.G., et al., Analysis of telomere lengths in cloned sheep. Nature, 1999. 399(6734): p. 316-7.
12. Tachibana, M., et al., Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 2013. 153(6): p. 1228-38.
13. Chung, Y.G., et al., Human Somatic Cell Nuclear Transfer Using Adult Cells. Cell Stem Cell, 2014.
14. Zhang, Y., et al., A poor imitation of a natural process: a call to reconsider the iPSC engineering technique. Cell Cycle, 2012. 11(24): p. 4536-44.
15. Klimanskaya, I., et al., Human embryonic stem cell lines derived from single blastomeres. Nature, 2006. 444(7118): p. 481-5.
16. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
17. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72.
18. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-20.
19. Ratajczak, M.Z., et al., A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia, 2007. 21(5): p. 860-7.
20. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): p. 41-9.
21. Subrammaniyan, R., et al., Application of autologous bone marrow mononuclear cells in six patients with advanced chronic critical limb ischemia as a result of diabetes: our experience. Cytotherapy, 2011. 13(8): p. 993-9.
22. Narasipura, S.D., et al., P-Selectin coated microtube for enrichment of CD34+ hematopoietic stem and progenitor cells from human bone marrow. Clin Chem, 2008. 54(1): p. 77-85.
23. Terai, S., et al., Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells, 2006. 24(10): p. 2292-8.
24. Lin, C.S., et al., Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol, 2010. 25(6): p. 807-15.
25. Smith, A.J., et al., Apoptotic susceptibility to DNA damage of pluripotent stem cells facilitates pharmacologic purging of teratoma risk. Stem Cells Transl Med, 2012. 1(10): p. 709-18.
26. Goldring, C.E., et al., Assessing the safety of stem cell therapeutics. Cell stem cell, 2011. 8(6): p. 618-628.
27. Katayama, Y., et al., Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 2006. 124(2): p. 407-421.
28. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
29. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-89.
30. Aguilar, H.N. and B.F. Mitchell, Physiological pathways and molecular mechanisms regulating uterine contractility. Hum Reprod Update, 2010. 16(6): p. 725-44.
31. Kovacs, M., et al., Mechanism of blebbistatin inhibition of myosin II. Journal of Biological Chemistry, 2004. 279(34): p. 35557-35563.
32. Hughes, C.S., L.M. Postovit, and G.A. Lajoie, Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010. 10(9): p. 1886-90.
33. Michel, G., et al., The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytologist, 2010. 188(1): p. 82-97.
34. Abedin, M. and N. King, Diverse evolutionary paths to cell adhesion. Trends Cell Biol, 2010. 20(12): p. 734-42.
35. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, 2011. 111(5): p. 3021-35.
36. Meng, G., et al., Extracellular matrix isolated from foreskin fibroblasts supports long-term xeno-free human embryonic stem cell culture. Stem Cells Dev, 2010. 19(4): p. 547-56.
37. Fu, X., et al., Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods, 2011. 17(9): p. 927-37.
38. Ilic, D., et al., Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy, 2012. 14(1): p. 122-8.
39. Hayashi, Y., et al., Reduction of N-glycolylneuraminic acid in human induced pluripotent stem cells generated or cultured under feeder- and serum-free defined conditions. PLoS One, 2010. 5(11): p. e14099.
40. Swistowski, A., et al., Xeno-Free Defined Conditions for Culture of Human Embryonic Stem Cells, Neural Stem Cells and Dopaminergic Neurons Derived from Them. Plos One, 2009. 4(7).
41. Hernandez, D., L. Ruban, and C. Mason, Feeder-Free Culture of Human Embryonic Stem Cells for Scalable Expansion in a Reproducible Manner. Stem Cells and Development, 2011. 20(6): p. 1089-1098.
42. Sugii, S., et al., Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci U S A, 2010. 107(8): p. 3558-63.
43. Kaupisch, A., et al., Derivation of vascular endothelial cells from human embryonic stem cells under GMP-compliant conditions: towards clinical studies in ischaemic disease. J Cardiovasc Transl Res, 2012. 5(5): p. 605-17.
44. Tsutsui, H., et al., An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat Commun, 2011. 2: p. 167.
45. Meng, G., S. Liu, and D.E. Rancourt, Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev, 2012. 21(11): p. 2036-48.
46. Yoon, T.M., et al., Human embryonic stem cells (hESCs) cultured under distinctive feeder-free culture conditions display global gene expression patterns similar to hESCs from feeder-dependent culture conditions. Stem Cell Rev, 2010. 6(3): p. 425-37.
47. Hughes, C.S., et al., Proteomic analysis of extracellular matrices used in stem cell culture. Proteomics, 2011. 11(20): p. 3983-3991.
48. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alpha V beta 5 integrin. Stem Cells, 2008. 26(9): p. 2257-2265.
49. Rajala, K., et al., Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Human Reproduction, 2007. 22(5): p. 1231-1238.
50. Manton, K.J., et al., A Chimeric Vitronectin: IGF-I Protein Supports Feeder-Cell-Free and Serum-Free Culture of Human Embryonic Stem Cells. Stem Cells and Development, 2010. 19(9): p. 1297-1305.
51. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 2010. 28(6): p. 611-U102.
52. Heng, B.C., et al., Translating Human Embryonic Stem Cells from 2-Dimensional to 3-Dimensional Cultures in a Defined Medium on Laminin- and Vitronectin-Coated Surfaces. Stem Cells and Development, 2012. 21(10): p. 1701-1715.
53. Yap, L.Y.W., et al., Defining a Threshold Surface Density of Vitronectin for the Stable Expansion of Human Embryonic Stem Cells. Tissue Engineering Part C-Methods, 2011. 17(2): p. 193-207.
54. Prowse, A.B., et al., Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials, 2010. 31(32): p. 8281-8.
55. Li, J.A., et al., Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases, 2010. 5(3): p. Fa132-Fa142.
56. Nishishita, N., et al., Generation of Virus-Free Induced Pluripotent Stem Cell Clones on a Synthetic Matrix via a Single Cell Subcloning in the Naive State. Plos One, 2012. 7(6).
57. Kim, B.S., et al., Design of artificial extracellular matrices for tissue engineering. Progress in Polymer Science, 2011. 36(2): p. 238-268.
58. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 606-U95.
59. Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods, 2010. 7(12): p. 989-U72.
60. Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. Journal of Biotechnology, 2010. 146(3): p. 143-146.
61. Harb, N., T.K. Archer, and N. Sato, The Rho-Rock-Myosin Signaling Axis Determines Cell-Cell Integrity of Self-Renewing Pluripotent Stem Cells. Plos One, 2008. 3(8).
62. Carlson, A.L., et al., Microfibrous substrate geometry as a critical trigger for organization, self-renewal, and differentiation of human embryonic stem cells within synthetic 3-dimensional microenvironments. Faseb Journal, 2012. 26(8): p. 3240-3251.
63. Nagaoka, M., et al., Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. Bmc Developmental Biology, 2010. 10.
64. Stephenson, E., et al., Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nature Protocols, 2012. 7(7): p. 1366-1381.
65. Lu, H.F., et al., A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials, 2012. 33(8): p. 2419-2430.
66. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 581-583.
67. Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-9144.
68. Nandivada, H., et al., Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nature Protocols, 2011. 6(7): p. 1037-1043.
69. Irwin, E.E., et al., Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials, 2011. 32(29): p. 6912-6919.
70. Ross, A.M., et al., Synthetic substrates for long-term stem cell culture. Polymer, 2012. 53(13): p. 2533-2539.
71. Zhang, R., et al., A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nature Communications, 2013. 4.
72. Hoffman, L.M. and M.K. Carpenter, Characterization and culture of human embryonic stem cells. Nature Biotechnology, 2005. 23(6): p. 699-708.
73. Gumbiner, B.M., Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol, 2005. 6(8): p. 622-34.
74. Ullmann, U., et al., Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol Hum Reprod, 2007. 13(1): p. 21-32.
75. Dedhar, S., Cell-substrate interactions and signaling through ILK. Current Opinion in Cell Biology, 2000. 12(2): p. 250-256.
76. Pashuck, E.T. and M.M. Stevens, Designing Regenerative Biomaterial Therapies for the Clinic. Science Translational Medicine, 2012. 4(160).
77. Liu, Y.X., et al., Modified Hyaluronan Hydrogels Support the Maintenance of Mouse Embryonic Stem Cells and Human Induced Pluripotent Stem Cells. Macromolecular Bioscience, 2012. 12(8): p. 1034-1042.
78. Li, Z.S., et al., Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials, 2010. 31(3): p. 404-412.
79. Siti-Ismail, N., et al., The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials, 2008. 29(29): p. 3946-3952.
80. Gerecht, S., et al., Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A, 2007. 104(27): p. 11298-303.
81. Mei, Y., et al., Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Materials, 2010. 9(9): p. 768-778.
82. Mahlstedt, M.M., et al., Maintenance of Pluripotency in Human Embryonic Stem Cells Cultured on a Synthetic Substrate in Conditioned Medium. Biotechnology and Bioengineering, 2010. 105(1): p. 130-140.
83. Nie, Y., et al., Scalable Culture and Cryopreservation of Human Embryonic Stem Cells on Microcarriers. Biotechnology Progress, 2009. 25(1): p. 20-31.
84. Kim, S., et al., A novel culture technique for human embryonic stem cells using porous membranes. Stem Cells, 2007. 25(10): p. 2601-2609.
85. Bigdeli, N., et al., Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. Journal of Biotechnology, 2008. 133(1): p. 146-153.
86. Higuchi, A., et al., Photon-modulated changes of cell attachments on poly(spiropyran-co-methyl methacrylate) membranes. Biomacromolecules, 2004. 5(5): p. 1770-4.
87. Higuchi, A., et al., Temperature-dependent cell detachment on Pluronic gels. Biomacromolecules, 2005. 6(2): p. 691-6.
88. Tamura, A., et al., Temperature-responsive poly(N-isopropylacrylamide)-grafted microcarriers for large-scale non-invasive harvest of anchorage-dependent cells. Biomaterials, 2012. 33(15): p. 3803-12.
89. Saito, T., et al., Reversal of Diabetes by the Creation of Neo-Islet Tissues Into a Subcutaneous Site Using Islet Cell Sheets. Transplantation, 2011. 92(11): p. 1231-1236.
90. Wei, H., et al., Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Progress in Polymer Science, 2009. 34(9): p. 893-910.
91. Kraehenbuehl, T.P., R. Langer, and L.S. Ferreira, Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Methods, 2011. 8(9): p. 731-6.
92. Phillips, B., et al., Attachment and growth of human embryonic stem cells on microcarriers (vol 138, pg 24, 2008). Journal of Biotechnology, 2009. 139(2): p. 194-194.
93. Janssens, S., et al., Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet, 2006. 367(9505): p. 113-121.
94. Serra, M., et al., Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One, 2011. 6(8): p. e23212.
95. Steiner, D., et al., Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol, 2010. 28(4): p. 361-4.
96. Amit, M., et al., Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2010. 6(2): p. 248-259.
97. Olmer, R., et al., Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Research, 2010. 5(1): p. 51-64.
98. Zweigerdt, R., et al., Scalable expansion of human pluripotent stem cells in suspension culture. Nature Protocols, 2011. 6(5): p. 689-700.
99. Amit, M., et al., Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nature Protocols, 2011. 6(5): p. 572-579.
100. Larijani, M.R., et al., Long-Term Maintenance of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells in Suspension. Stem Cells and Development, 2011. 20(11): p. 1911-1923.
101. Marinho, P.A.N., et al., Xeno-Free Production of Human Embryonic Stem Cells in Stirred Microcarrier Systems Using a Novel Animal/Human-Component-Free Medium. Tissue Engineering Part C-Methods, 2013. 19(2): p. 146-155.
102. Chen, A.K., et al., Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res, 2011. 7(2): p. 97-111.
103. Fernandes, A.M., et al., Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Brazilian Journal of Medical and Biological Research, 2009. 42(6): p. 515-522.
104. Serra, M., et al., Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. Journal of Biotechnology, 2010. 148(4): p. 208-215.
105. Oh, S.K.W., et al., Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Research, 2009. 2(3): p. 219-230.
106. Bardy, J., et al., Microcarrier Suspension Cultures for High-Density Expansion and Differentiation of Human Pluripotent Stem Cells to Neural Progenitor Cells. Tissue Engineering Part C-Methods, 2013. 19(2): p. 166-180.
107. Storm, M.P., et al., Three-Dimensional Culture Systems for the Expansion of Pluripotent Embryonic Stem Cells. Biotechnology and Bioengineering, 2010. 107(4): p. 683-695.
108. Lock, L.T. and E.S. Tzanakakis, Expansion and Differentiation of Human Embryonic Stem Cells to Endoderm Progeny in a Microcarrier Stirred-Suspension Culture. Tissue Engineering Part A, 2009. 15(8): p. 2051-2063.
109. Wilson, J.L. and T.C. McDevitt, Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation. Biotechnology and Bioengineering, 2013. 110(3): p. 667-682.
110. Ko, D.Y., et al., Recent progress of in situ formed gels for biomedical applications. Progress in Polymer Science, 2013. 38(3-4): p. 672-701.
111. Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Prog Polym Sci, 2012. 37(1): p. 106-126.
112. Huang, X.B., et al., Microenvironment of alginate-based microcapsules for cell culture and tissue engineering. Journal of Bioscience and Bioengineering, 2012. 114(1): p. 1-8.
113. Jang, M., et al., A feeder-free, defined three-dimensional polyethylene glycol-based extracellular matrix niche for culture of human embryonic stem cells. Biomaterials, 2013. 34(14): p. 3571-3580.
114. Lutolf, M.R., et al., Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nature Biotechnology, 2003. 21(5): p. 513-518.
115. Higuchi, A., et al., Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev, 2013. 113(5): p. 3297-328.
116. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-7.
117. Robinton, D.A. and G.Q. Daley, The promise of induced pluripotent stem cells in research and therapy. Nature, 2012. 481(7381): p. 295-305.
118. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014.
119. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol, 2006. 38(7): p. 1063-75.
120. O′Connor, M.D., et al., Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells, 2008. 26(5): p. 1109-16.
121. Kokubu, F., et al., Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J, 1988. 7(11): p. 3413-22.
122. Pera, M.F., B. Reubinoff, and A. Trounson, Human embryonic stem cells. J Cell Sci, 2000. 113 ( Pt 1): p. 5-10.
123. Andrews, P.W., et al., Two monoclonal antibodies recognizing determinants on human embryonal carcinoma cells react specifically with the liver isozyme of human alkaline phosphatase. Hybridoma, 1984. 3(1): p. 33-9.
124. Brimble, S.N., et al., Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev, 2004. 13(6): p. 585-97.
125. Xu, C., et al., Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells, 2005. 23(3): p. 315-23.
126. Phillips, B.W., et al., Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol, 2008. 138(1-2): p. 24-32.
127. Bigdeli, N., et al., Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J Biotechnol, 2008. 133(1): p. 146-53.
128. Baxter, M.A., et al., Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res, 2009. 3(1): p. 28-38.
129. Amit, M., et al., Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod, 2004. 70(3): p. 837-45.
130. Yamanaka, S., et al., Pluripotency of embryonic stem cells. Cell Tissue Res, 2008. 331(1): p. 5-22.
131. Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol, 2001. 19(10): p. 971-4.
132. Harkness, L., et al., Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker. Stem Cell Rev, 2009. 5(4): p. 353-68.
133. Sjogren-Jansson, E., et al., Large-scale propagation of four undifferentiated human embryonic stem cell lines in a feeder-free culture system. Dev Dyn, 2005. 233(4): p. 1304-14.
134. Ameen, C., et al., Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol, 2008. 65(1): p. 54-80.
135. Richards, M., et al., Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol, 2002. 20(9): p. 933-6.
136. Peiffer, I., et al., Use of xenofree matrices and molecularly-defined media to control human embryonic stem cell pluripotency: effect of low physiological TGF-beta concentrations. Stem Cells Dev, 2008. 17(3): p. 519-33.
137. Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun, 2008. 375(1): p. 27-32.
138. Zhou, J., et al., mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci U S A, 2009. 106(19): p. 7840-5.
139. Su, Z., et al., Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clin Cancer Res, 2008. 14(19): p. 6207-17.
140. Li, Z., et al., Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials, 2010. 31(3): p. 404-12.
141. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells, 2008. 26(9): p. 2257-65.
142. Rosler, E.S., et al., Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn, 2004. 229(2): p. 259-74.
143. Odell, I.D. and D. Cook, Immunofluorescence techniques. J Invest Dermatol, 2013. 133(1): p. e4.
144. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179.
145. Niesters, H.G.M., Quantitation of viral load using real-time amplification techniques. Methods, 2001. 25(4): p. 419-429.
146. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 2001. 25(4): p. 402-408.
147. Kumar, S.S., et al., The combined influence of substrate elasticity and surface-grafted molecules on the ex vivo expansion of hematopoietic stem and progenitor cells. Biomaterials, 2013. 34(31): p. 7632-44.
指導教授 ?口亞紺(Akon Higuchi) 審核日期 2014-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明