博碩士論文 101324040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.145.47.148
姓名 中川小夜子(Hsiao-Yeh-Tzu Chung-Chuan)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討聚乙烯二醇化對於聚乙烯二醇化人類副甲狀腺素 (1-34) 與疏水介面間交互作用之影響
(Effect of PEGylation on the Interactions between PEGylated Teriparatide and Hydrophobic Surface)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來蛋白質藥物和胜肽藥物等生物製劑開始蓬勃發展,此類生物製劑之進一步於藥效提升、副作用降低與具標靶治療等之相關研究非常重要。目前解決生物製劑之血液穩定性之方式為聚乙烯二醇化,聚乙烯二醇化可增加生物製劑之溶解度、降低肝腎排除的機率與避免血液中酵素的分解,因而延長藥物在人體內之循環時間。由於聚乙烯二醇具有良好的生物相容性,所以被廣泛應用在改良生物製劑之用途。在聚乙烯二醇化的過程中,時常伴隨著未接枝、不同接枝程度以及不同接枝位置之產物的生成,然而不同接枝情形皆會影響生物製劑之特性,因此聚乙烯二醇化後之生物製劑的純化是非常重要的。
本研究以Teriparatide作為目標分子,探討胜肽以及聚乙烯二醇化胜肽於逆相管柱層析中之吸附機制。Teriparatide為人類副甲狀腺素中1到34胺基酸片段,於2002年經美國食品藥物管理局核可作為治療骨質疏鬆症之胜肽藥物,主要是藉由皮下注射方式進行給藥。
我們利用圓二色光譜量測Teriparatide與聚乙烯二醇化Teriparatide異構物之二級結構,發現經過聚乙烯二醇化後,其二級結構會發生改變,且其結構穩定性較未接枝聚乙烯二醇時來的高。另外,我們量測Teriparatide與聚乙烯二醇化Teriparatide異構物於水相以及有機相中之溶解度,發現所有樣品在水相皆有良好的溶解度;但在有機相中,Teriparatide的溶解度低,而聚乙烯二醇化會使Teriparatide在有機相中之溶解度增加。最後,我們以逆相管柱層析量測並計算樣品於管柱中作用之熱力學參數,由結果發現N端或C端聚乙烯二醇化Teriparatide吸附到逆相管柱層析中之樹脂上時,為一焓主導之吸附,即吸附過程伴隨熱量的釋放並且亂度減少;反觀Lys13聚乙烯二醇化Teriparatide吸附到管柱層析中之樹脂上時,為一熵主導之吸附,即吸附過程亂度增加,但須吸收熱量。由熱力學參數發現N端或C端接枝聚乙烯二醇化Teriparatide與Lys13接枝聚乙烯二醇化 Teriparatide兩者之吸附機制截然不同,因此在本研究最後嘗試以調控溫度之方式,分離上述之位置異構物,雖未成功地基線分離上述之位置異構物,但發現原本同時被沖堤出來之異構物,經由調控溫度仍然可以明顯地看出N端或C端聚乙烯二醇化Teriparatide與Lys13聚乙烯二醇化Teriparatide有不同的滯留時間。
摘要(英) In recent years, protein and peptide drugs play an important role in pharmaceutical industry. Unfortunately, these protein and peptide drugs are proteolytically instable in human serum resulting in short circulation half-life. A new product through grafting the polyethylene glycol (PEG), a well-known biocompatible polymer, with protein and peptide drugs is able to avoid clearance of kidney or attack of immune system, thus prolong the circulating half-life time. However, for the PEGylated protein and peptide drugs, the positional isomers are usually formed with random PEGylation. The chromatographic purification process of PEGylated protein and peptide drugs is still without a general guideline to carrier out, in particular for the role of PEG in protein and peptide drugs. In this study, we use Teriparatide as a model peptide drug, investigating the effect of PEGylation on the interactions between PEGylated peptide and hydrophobic surface. Teriparatide, a peptide drug for treating to osteoporosis by once-daily injection, is the 1-34 segment of recombinant human parathyroid hormone. After PEGylation, we found that the retention time increase and we determine the thermodynamic parameters between peptides and hydrophobic surface by reversed-phase chromatography. From the results, we concluded that the PEG chain will expose to the solution phase when the N- or C-PEG-Teriparatide adsorbed to the hydrophobic surface, resulting in numerous hydration reactions. In the contrary, when the Lys13-PEG-Teriparatide adsorbed to the hydrophobic surface, PEG chain will attach to the hydrophobic surface, release the water molecules, leading to increase the entropy of system. In addition, from the results of circular dichroism, the secondary structure of PEGylated Teriparatides are stronger than native Teriparatide in 30% ACN. Therefore, Teriparatide is more soluble in this condition, lead to the weaker binding strength between peptide and hydrophobic surface. Furthermore, the structure of Teriparatide in different solution conditions will change more than PEGylated Teriparatides. We are able to consider that PEGylated Teriparatides are more rigid.
關鍵字(中) ★ 聚乙烯二醇
★ 疏水介面
★ 逆相管柱層析
★ 熱力學參數
關鍵字(英)
論文目次 摘要 I
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
第二章 文獻回顧 4
2-1 層析法之簡介 4
2-1-1 逆相管柱層析(Reversed-phase chromatography) 5
2-2 人類副甲狀腺素荷爾蒙(1-34) 6
2-3 聚乙烯二醇化之簡介與應用 7
2-3-1 聚乙烯二醇化胜肽藥物 8
2-3-2 聚乙烯二醇化藥物之化學合成 9
2-3-3 聚乙烯二醇化藥物之分離純化 11
2-4 以熱力學研究生化分子與界面間之交互作用 12
2-4-1 鍵結機制之探討 13
2-4-2 以van’t Hoff方程式研究吸附行為 15
第三章 材料與實驗方法 17
3-1 藥品與材料 17
3-2 儀器設備 17
3-2-1 高效能液相層析儀 17
3-2-2 圓二色光譜儀 18
3-2-3 其它設備 18
3-3 實驗方法 18
3-3-1 聚乙烯二醇化胜肽化學合成 18
3-3-2 聚乙烯二醇化胜肽之分離純化 19
3-3-3 以圓二色光譜分析聚乙烯二醇化胜肽之二級結構 20
3-3-4 溶解度測試 20
3-3-5 以管柱層析計算熱力學參數 21
3-3-6 調控溫度分離聚乙烯二醇化Teriparatide之異構物 21
第四章 結果與討論 23
4-1 聚乙烯二醇化Teriparatide之合成、純化與鑑定 23
4-1-1 聚乙烯二醇化Teriparatide之合成 24
4-1-2 聚乙烯二醇化Teriparatide之純化 24
4-1-3 聚乙烯二醇化Teriparatide之接枝位置判定 26
4-2 聚乙烯二醇化Teriparatide之性質測定 29
4-2-1 以圓二色光譜分析聚乙烯二醇化Teriparatide之二級結構 29
4-2-2 聚乙烯二醇化Teriparatide之溶解度測試 32
4-3 以van’t Hoff方程式探討聚乙烯二醇化Teriparatide之鍵結機制 34
4-3-1 Teriparateide之鍵結機制 34
4-3-2 N端或C端聚乙烯二醇化Teriparatide之鍵結機制 35
4-3-3 Lys13聚乙烯二醇化Teriparatide之鍵結機制 36
第五章 結論 40
第六章 參考文獻 42
參考文獻 1. Roberts, M.J., M.D. Bentley, and J.M. Harris, Chemistry for peptide and protein PEGylation. 2002, Advanced drug delivery reviews. p. 459-476.
2. Veronese, F.M., Peptide and protein PEGylation: a review of problems and solutions. 2001, Biomaterials. p. 405-417.
3. Na, D.H., et al., Stability of PEGylated salmon calcitonin in nasal mucosa. 2004, Journal of pharmaceutical sciences. p. 256-261.
4. Shiraki, M., T. Sugimoto, and T. Nakamura, Effects of a single injection of teriparatide on bone turnover markers in postmenopausal women. 2013, Osteoporosis International. p. 219-226.
5. Sowa, H., E. Hamaya, and T. Yamamoto, Teriparatide: human recombinant parathyroid hormone (1-34) as a daily subcutaneous injection. 2011, Clinical calcium. p. 9-16.
6. A., D., Will biobetters beat biologics? 2011.
7. N., T., Biobetters a big opportunity for biopharm and CROs. 2011.
8. Dinwoodie, N., Biobetters and the Future Biologics Market. 2011. p. 31-35.
9. Alconcel, S.N.S., A.S. Baas, and H.D. Maynard, FDA-approved poly (ethylene glycol)-protein conjugate drugs. 2011, Polymer Chemistry. p. 1442-1448.
10. Fee, C.J. and J.M. Van Alstine, PEG-proteins: reaction engineering and separation issues. 2006, Chemical engineering science. p. 924-939.
11. Ettre, L.S., Nomenclature for chromatography (IUPAC Recommendations 1993). 1993, Pure and applied chemistry. p. 819-872.
12. Kopaciewicz, W., M.A. Rounds, and F.E. Regnier, Stationary phase contributions to retention in high-performance anion-exchange protein chromatography: ligand density and mixed mode effects. 1985, Journal of Chromatography A. p. 157-172.
13. Melander, W.R., Z. El Rassi, and C. Horv獺th, Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography: Effect of salts on the retention of proteins. 1989, Journal of Chromatography A. p. 3-27.
14. Norde, W., Energy and entropy of protein adsorption. 1992, Journal of dispersion science and technology. p. 363-377.
15. Yamamoto, S. and T. Ishihara, Ion-exchange chromatography of proteins near the isoelectric points. 1999, Journal of Chromatography A. p. 31-36.
16. Kroeff, E.P. and D.J. Pietrzyk, Investigation of the retention and separation of amino acids, peptides, and derivatives on porous copolymers by high performance liquid chromatography. 1978, ANALYTICAL CHEMISTRY. p. 502-511.
17. Dismer, F. and J. Hubbuch, A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins. 2007, Journal of Chromatography A. p. 312-320.
18. Gilar, M. and A. Jaworski, Retention behavior of peptides in hydrophilic-interaction chromatography. 2011, Journal of Chromatography A. p. 8890-8896.
19. Barak, J.A. and J.A. Kennedy, HPLC Retention Thermodynamics of Grape and Wine Tannins. 2013, Journal of agricultural and food chemistry. p. 4270-4277.
20. Aguilar, M.-I., et al., RP-HPLC binding domains of proteins. 1998, Analytical chemistry. p. 5010-5018.
21. McNay, J.L.M. and E.J. Fernandez, Protein unfolding during reversed phase chromatography: I. Effect of surface properties and duration of adsorption. 2001, Biotechnology and bioengineering. p. 224-232.
22. McNay, J.L.M., J.P. O′Connell, and E.J. Fernandez, Protein unfolding during reversed phase chromatography: II. Role of salt type and ionic strength. 2001, Biotechnology and bioengineering. p. 233-240.
23. Tsai, C.-W., et al., Study of conformation effects on the retention of small peptides in reversed-phase chromatography by thermodynamic analysis and molecular dynamics simulation. 2010, The Journal of Physical Chemistry B. p. 11620-11627.
24. Gilar, M., H. Xie, and A. Jaworski, Utility of retention prediction model for investigation of peptide separation selectivity in reversed-phase liquid chromatography: impact of concentration of trifluoroacetic acid, column temperature, gradient slope and type of stationary phase. 2009, Analytical chemistry. p. 265-275.
25. Finkelstein, J.S., et al., The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. 2003, New England Journal of Medicine. p. 1216-1226.
26. Potts, J.T., Parathyroid hormone: past and present. 2005, Journal of endocrinology. p. 311-325.
27. Deal, C. and J. Gideon, Recombinant human PTH 1-34 (Forteo): an anabolic drug for osteoporosis. 2003, Cleveland Clinic journal of medicine,. p. 585-586.
28. Werle, M. and A. Bernkop-Schnurch, Strategies to improve plasma half life time of peptide and protein drugs. 2006, Amino acids. p. 351-367.
29. Narayanan, D., et al., In Vitro and in Vivo Evaluation of Osteoporosis Therapeutic Peptide PTH 1??4 Loaded PEGylated Chitosan Nanoparticles. 2013, Molecular pharmaceutics. p. 4159-4167.
30. Israelachvili, J., The different faces of poly (ethylene glycol). 1997, Proc. Natl. Acad. Sci. p. 8378-8379.
31. Morar, A.S., J.L. Schrimsher, and M.D. Chavez, PEGylation of proteins: A structural approach. 2006, Drug discovery today.
32. Heymann, B. and H. Grubm羹ller, Elastic properties of poly (ethylene-glycol) studied by molecular dynamics stretching simulations. 1999, Chemical physics letters. p. 425-432.
33. Liu, K.-J. and J.L. Parsons, Solvent effects on the preferred conformation of poly (ethylene glycols). 1969, Macromolecules. p. 529-533.
34. 洪世勳, 熱力學分析聚乙烯二醇在水合程序中結構變化, in Department of Chemical and Materials Engineering. 2008, National Central University: Taiwan.
35. Chang, Y., et al., A systematic SPR study of human plasma protein adsorption oxide) triblock copolymer surfaces. 2010, Journal of Biomedical Materials Research Part A. p. 400-408.
36. Chiag, Y.-C., et al., Biofouling resistance of ultrafiltration membranes controlled by surface self-assembled coating with PEGylated copolymers. 2012, Langmuir. p. 1399-1407.
37. Jain, A. and S.K. Jain, PEGylation: an approach for drug delivery. A review. 2008, Critical Reviews™ in Therapeutic Drug Carrier Systems.
38. Meng, F., et al., PEGylation of human serum albumin: reaction of PEG-phenyl-isothiocyanate with protein. 2008, Bioconjugate chemistry. p. 1352-1360.
39. Harris, J.M., PEGylation-A" Sunset" technology?-Recent advances and new applications suggest a favorable future for PEGylation technology. 2004.
40. Working, P.K., et al., Safety of poly (ethylene glycol) and poly (ethylene glycol) derivatives. 1997, Poly (Ethylene Glycol). p. 45-57.
41. Abuchowski, A., et al., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. 1977, J. Biol. Chem. p. 3578-3581.
42. Bailon, P. and C.-Y. Won, PEG-modified biopharmaceuticals. 2009.
43. Kinstler, O.B., et al., Characterization and stability of N-terminally PEGylated rhG-CSF. 1996, Pharmaceutical Research. p. 996-1002.
44. Na, D.H. and K.C. Lee, Capillary electrophoretic characterization of PEGylated human parathyroid hormone with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. 2004, Analytical biochemistry. p. 322-328.
45. Annathur, G.V., et al., Application of arginine as an efficient eluent in cation exchange chromatographic purification of a PEGylated peptide. 2010, Journal of chromatography A. p. 3783-3793.
46. Cai, Y. and P. Yue, Separation of exenatide analogue mono-PEGylated with 40kDA polyethylene glycol by cation exchange chromatography. 2011, Journal of chromatography A. p. 6953-6960.
47. Wang, X., et al., Preparation and characterization of PEGylated terlipressin. 2010, Journal of applied polymer science. p. 3220-3224.
48. Na, D.H. and P.P. DeLuca, PEGylation of octreotide: I. Separation of positional isomers and stability against acylation by poly (D, L-lactide-co-glycolide). 2005, Pharmaceutical research. p. 736-742.
49. Park, E.J., K.C. Lee, and D.H. Na, Separation of positional isomers of mono-poly (ethylene glycol)-modified octreotides by reversed-phase high-performance liquid chromatography. 2009, Journal of chromatography A. p. 7793-7797.
50. Pabst, T.M., et al., Comparison of strong anion-exchangers for the purification of a PEGylated protein. 2007, Journal of Chromatography A. p. 172-182.
51. Muller, E., et al., Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins. 2010, Journal of Chromatography A. p. 4696-4703.
52. Dou, H., et al., Synthesis and Purification of Mono-PEGylated Insulin. 2007, Chemical biology & drug design. p. 132-138.
53. Pai, S.S., T.M. Przybycien, and R.D. Tilton, Protein PEGylation attenuates adsorption and aggregation on a negatively charged and moderately hydrophobic polymer surface. 2010, Langmuir. p. 18231-18238.
54. Lenhoff, A.M., Protein adsorption and transport in polymer-functionalized ion-exchangers. 2011, Journal of Chromatography A. p. 8748-8759.
55. Nguyen Viet, C. and B. Trathnigg, Determination of thermodynamic parameters in reversed phase chromatography for polyethylene glycols and their methyl ethers in different mobile phases. 2009, Journal of separation science. p. 464-474.
56. Dieterle, M., T. Blaschke, and H. Hasse, Microcalorimetric study of adsorption of human monoclonal antibodies on cation exchange chromatographic materials. 2008, Journal of Chromatography A. p. 1-9.
57. Pinholt, C., et al., Influence of PEGylation with linear and branched PEG chains on the adsorption of glucagon to hydrophobic surfaces. 2011, European Journal of Pharmaceutics and Biopharmaceutics. p. 139-147.
58. Werner, A., T. Blaschke, and H. Hasse, Microcalorimetric study of the adsorption of PEGylated lysozyme and PEG on a mildly hydrophobic resin: influence of ammonium sulfate. 2012, Langmuir. p. 11376-11383.
59. Blaschke, T., A. Werner, and H. Hasse, Microcalorimetric study of the adsorption of native and mono-PEGylated bovine serum albumin on anion-exchangers. 2013, Journal of Chromatography A. p. 58-68.
60. Ueberbacher, R., et al., Hydrophobic interaction chromatography of proteins: Thermodynamic analysis of conformational changes. 2010, Journal of Chromatography A. p. 184-190.
61. Lin, F.-Y., W.-Y. Chen, and H.-M. Chen, Microcalorimetric study of the effect of hexa-histidine tag and denaturant on the interaction mechanism between protein and metal-chelating gel. 2001, Journal of colloid and interface science. p. 333-339.
62. Perkins, T.W., et al., Protein retention in hydrophobic interaction chromatography: modeling variation with buffer ionic strength and column hydrophobicity. 1997, Journal of chromatography A. p. 1-14.
63. Wiggins, P.M., Hydrophobic hydration, hydrophobic forces and protein folding. 1997, Physica A: Statistical Mechanics and its Applications. p. 113-128.
64. Barnes, P., et al., Cooperative effects in simulated water. 1979, Nature. p. 459-464.
65. Andrade, J.D., Surface and interfacial aspects of biomedical polymers. Vol. 2. 1985: Journal of Polymer Science Part C: Polymer Letters.
66. Flynn, J.H., The Temperature integral its use and abuse. 1997, Thermochimica Acta. p. 83-92.
67. Cole, L.A. and J.G. Dorsey, Temperature dependence of retention in reversed-phase liquid chromatography. 1. Stationary-phase considerations. 1992, Anal. Chem. p. 1317-1323.
68. Boysen, R.I., et al., Observations on the origin of the non-linear van′t Hoff behaviour of polypeptides in hydrophobic environments. 1999, Biophysical chemistry. p. 79-97.
69. Wieprecht, T., et al., Role of helix formation for the retention of peptides in reversed-phase high-performance liquid chromatography. 2001, Journal of Chromatography A. p. 1-12.
70. Vailaya, A. and C. Horv獺th, Exothermodynamic relationships in liquid chromatography. 1998, The Journal of Physical Chemistry B. p. 701-718.
71. Vailaya, A. and C. Horvath, Retention thermodynamics in hydrophobic interaction chromatography. 1996, Ind. Eng. Chem. Res. p. 2964-2981.
72. Vailaya, A. and C. Horvath, Retention in hydrophobic interaction chromatography and dissolution of nonpolar gases in water. 1996, Biophysical chemistry. p. 81-93.
73. Bian, L., D. Wu, and W. Hu, Temperature induced conformational transition oliquid chromatography. 2014, Biomedical Chromatography. p. 295-301.
74. Rowe, G.E., et al., Thermodynamics of hydrophobic interaction chromatography of acetyl amino acid methyl esters. 2008, Journal of Chromatography A. p. 243-253.
75. Wong, S.S., Reactive groups of proteins and their modifying agents. 1991, Chemistry of Protein Conjugation and Crosslinking. p. 27-29.
76. 高偉紘, 利用逆相管柱層析並輔以溶解度參數計算進行聚乙烯二醇化人類副甲狀腺素位置異購物之分離, in Department of Chemical and Materials Engineering. 2013, National Central University: Taiwan.
77. Na, D.H., et al., Identification of the modifying sites of mono-PEGylated salmon calcitonins by capillary electrophoresis and MALDI-TOF mass spectrometry. 2001, Journal of Chromatography B: Biomedical Sciences and Applications. p. 259-263.
78. Plesner, B., et al., Effects of PEG size on structure, function and stability of PEGylated BSA. 2011, European Journal of Pharmaceutics and Biopharmaceutics. p. 399-405.
79. Svergun, D.I., et al., Solution structure of poly (ethylene) glycol-conjugated hemoglobin revealed by small-angle X-ray scattering: implications for a new oxygen therapeutic. 2008, Biophysical journal. p. 173-181.
80. Reed, J. and T.A. Reed, A set of constructed type spectra for the practical estimation of peptide secondary structure from circular dichroism. 1997, Analytical biochemistry. p. 36-40.
指導教授 陳文逸 審核日期 2014-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明