博碩士論文 101324042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.205.109.82
姓名 張雯音(Wen-yin Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 液橋分離與液面爬升物體之研究
(Separation of Liquid Bridge and Meniscus-Climbing Object)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 電潤濕動態行為探討
★ 表面粗糙度對接觸角遲滯影響之效應★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象
★ 低溫還原氧化石墨烯薄膜★ 雙離子型磺基甜菜鹼基材之潤濕現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文分為兩大部分,分別為液橋分離之研究與液面爬升物體之研究。

*第一部分:液橋分離之研究
抗指紋與抗汙機制通常會涉及兩個不同的表面之間形成的液橋,當兩平面在分開時液橋傾向潤濕其中一平面,而使得另一平面表現出抗汙的效果。本論文觀察潤濕特性對液橋被兩相異平面分開的過程之影響,進行實驗與理論模擬的研究。
在液橋被兩板拉伸至斷裂的過程中,一般而言,在兩平面分開的初期,液橋於兩板上的接觸線皆會撤退,接下來的行為根據兩板間潤濕競爭結果的不同,可分為以下五種模型:(1) 其中一板的接觸線持續後退,另一板的接觸線保持固定不變;(2) 兩板的接觸線皆呈現持續固定的狀態;(3) 其中一板的接觸線保持固定不變,另一板的接觸線於斷裂前開始向外擴張;(4) 其中一板的接觸線持續後退,另一板的接觸線於斷裂前開始向外擴張;(5) 兩平面上的接觸線於斷裂前皆向外擴張。
實驗結果與Surface Evolver 的模擬結果有很好的一致性,顯然地,在兩板競爭的過程中,潤濕競爭的獲勝方在斷裂前往往伴隨著兩個現象:接觸角上升與接觸線擴張;由模擬分析的結果顯示,潤濕競爭的關鍵取決於兩板的本質接觸角與接觸角遲滯,當兩平板經過壓縮與拉伸的程序後,相較於接觸角較小且接觸角遲滯也較小的平板,兩板中接觸角較大且接觸角遲滯也較大的平板會殘留較多液滴,顯示出潤濕競爭的過程中,接觸角的大小並非唯一決定最終結果之因素,接觸角遲滯亦是相當重要的影響變因。

*第二部分:液面爬升物體之研究
自然界一些能在水面上行走的昆蟲,本來是陸生動物,經過進化之後變成能夠適應環境在水上生活,例如水黽,這些小昆蟲大多無法靠自己的足肢爬上岸邊的彎月狀上升水面,於是發展出一種利用表面張力的方法,幫助自己輕易地上岸;藉由固定身體姿勢來使水面變形而產生側向表面張力,這些昆蟲即可獲得一自然的推進力,使自己迅速地滑上岸,此滑行行為即可稱為液面爬升(Meniscus-climbing)。
本論文旨在深入探討具液面爬升能力的物體之運動行為,藉由改變各種不同的試片材質、形狀與密度,將試片置於懸垂液滴下方,並以高速攝影機觀察其對液面爬升行為的影響。結果顯示,根據試片條件的不同,爬升的情形亦會有顯著的差異。特別的是,具液面爬升能力的試片在爬升之前會先旋轉成垂直方向,接著再爬升至相對應的位置。此外,長度越長的試片能夠爬升的高度越高。具相同面積但形狀不同之試片,因試片長寬比的不同,可發現隨著長寬比增大,試片爬升的高度亦越高。最後,比較不同材質的試片,因密度大小的不同,可觀察到隨著密度越小,試片能爬升的高度也隨之增加。
摘要(英) This study contains two topics: separation of liquid bridge and meniscus -climbing object.

*PART I: Separation of Liquid Bridge
Anti-fingerprint or anti-smudge mechanism often involves a liquid bridge formed between two dissimilar surfaces. As the two surfaces are separating, the tendency of the liquid to wet one surface renders the other anti-smudge. In this work, the wetting characteristics of the liquid bridge on two asymmetric surfaces during their separation are investigated both experimentally and theoretically. In general, the contact lines on both surfaces withdraw at the beginning of separation. Before the rupture of the liquid bridge, however, five types of wetting competition are observed: (i) While the contact line remains receding on one surface, it becomes pinned on the other; (ii) The contact line on both surfaces are pinned; (iii) While the contact line is pinned on the one surface, it starts to expand on the other; (iv) While the contact line remains receding on one surface, it start to expand on the other; (v) The contact line on both surfaces are expanded. Our experimental results are in good agreement with the simulation outcomes by Surface Evolver. Evidently, the winning surface is accompanied with the signature of contact angle increment or base diameter expansion before liquid bridge rupture. Further simulation analyses reveal that wetting competition depends on both intrinsic contact angle and contact angle hysteresis. After compression and relaxation of two surfaces, the one with higher contact angle and larger hysteresis may be more wettable than the other with lower contact angle and smaller hysteresis.

*PART II: Meniscus-Climbing Object
In nature, some terrestrial insects evolved to live exclusively on the water surface in order to adapt to the environment, such as water striders. They rely on surface tension for static weight support, and use a variety of means to propel themselves along the surface. When these small insects pass from the water surface to land, they have to overcome the slippery meniscus water surfaces that border the water’s edge. They are unable to climb meniscus by using their own legs, therefore developed the meniscus-climbing technique. By fixing their body posture, the water surface is thus deformed to generate lateral surface tension, and then the insects are propelled upon the meniscus surface without moving their legs. This phenomenon is so called “meniscus-climbing”.
In this study, we investigate the behavior of the objects which have meniscus-climbing ability by testing a variety of materials, shapes and densities of the objects. In experiment, we put these objects below the pendant drop successively, and try to observe the influences caused by these conditions to the meniscus-climbing behavior by the high-speed camera. The result shows that the different conditions of objects make significant difference of climbing situations. Specifically, we observe that the objects with climbing ability rotate themselves into vertical direction just before the climbing behavior. Furthermore, the longer object could climb higher. And in the condition of the same area but different shapes, we find the larger aspect ratio, the higher object climbing. Finally, by comparing different densities of the objects, we observe that the lower density, the higher object climbing.
關鍵字(中) ★ 液橋
★ 液面爬升
關鍵字(英) ★ liquid bridge
★ meniscus-climbing
論文目次 摘要 v
Abstract vii
誌謝 ix
目錄 x
圖表目錄 xiii
第一部分 - 液橋分離之研究 1
第一章 緒論 2
1-1 前言 2
1-2 研究動機與目的 3
1-3 相關文獻回顧 4
第二章 理論背景 7
2-1 潤濕現象 7
2-2 接觸角的定義 8
2-2-1 楊氏方程式 9
2-2-2 溫佐方程式 11
2-2-3 卡西方程式 13
2-3 接觸角遲滯 14
2-3-1 接觸角遲滯之定義 15
2-3-2 接觸角遲滯之成因 17
2-4 接觸角量測方法 18
2-4-1 微量針頭法 18
2-4-2 蒸發法 19
2-4-3 威廉米平板法 19
2-4-4 傾斜法 20
2-4-5 壓板法 21
第三章 實驗介紹 23
3-1 實驗儀器介紹 23
3-1-1 影像式接觸角量測儀 23
3-1-2 巨觀放大顯微測量系統 24
3-2 實驗材料與藥品 25
3-3 實驗步驟 25
第四章 結果與討論 27
4-1 接觸角遲滯的重要性 28
4-2 R-P, R-P型 30
4-3 R, R-P型 34
4-4 R, R-P-E型 38
4-5 R-P, R-P-E型與R-P-E, R-P-E型 43
4-5-1 R-P, R-P-E型 43
4-5-2 R-P-E, R-P-E型 46
第五章 結論 49
第六章 參考文獻 50
第二部分 - 液面爬升物體之研究 52
第七章 緒論 53
7-1 前言 53
7-2 研究動機與目的 54
7-3 相關文獻回顧 55
第八章 理論背景 57
8-1 表面張力 57
8-2 表面張力的量測方法 57
第九章 實驗介紹 61
9-1 實驗儀器介紹 61
9-1-1 高速取像光學界面與流變性質量測模組 61
9-2 實驗材料與藥品 62
9-3 實驗步驟 62
第十章 結果與討論 64
10-1 試片旋轉現象 66
10-2 長度效應 68
10-3 長寬比效應 70
10-4 密度效應 71
第十一章 結論 73
第十二章 參考文獻 74
參考文獻 *PART I: Separation of Liquid Bridge
[1] D. Deganello, A. J. Williams, T. N. Croft, A. S. Lubansky, D. T. Gethin, T. C. Claypole, “Level-set method for the modelling of liquid bridge formation and break-up”, 40, 42-51, (2011)
[2] S. J. Hong, T. H. Chou, S. H. Chan, Y. J. Sheng, H. K. Tsao, “Droplet compression and relaxation by a superhydrophobic surface: contact angle hysteresis”, Langmuir, 28, 5606-5613, (2012)
[3] B. Mielniczuk, T. Hueckel, M. S. E. Youssoufi, “Micro-scale testing of capillary bridge evolution due to evaporation”, Multiphysical Testing of Soils and Shales, 233-238, (2013)
[4] H. Chen, A. Amirfazli, T. Tang, “Modeling liquid bridge between surfaces with contact angle hysteresis”, Langmuir, 29, 3310-3319, (2013)
[5] L. Sirghi, R. Szoszkiewicz, E. Riedo, “Volume of a Nanoscale Water Bridge”, Langmuir, 22, 1093-1098, (2006)
[6] T. I. Vogel, “Stability of a liquid drop trapped between two parallel planes”, SIAM J. Appl. Math., 47, 516-525, (1987)
[7] B. Qian, K. S. Breuer, “The motion, stability and breakup of a stretching liquid bridge with a receding contact line”, J. Fluid Mech., 666, 554-572, (2011)
[8] Y. I. Rabinovich, M. S. Esayanur, B. M. Moudgil, “Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment”, Langmuir, 21, 10992-10997, (2005)
[9] P. G. de Gennes, B. W. Francoise, Q. David, "Capillarity and
wetting phenomena", Springer, (2004)
[10] F. M. Chang, S. J. Hong, Y. J. Sheng, H. K. Tsao, “High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defect”
Appl. Phys. Lett., 95, 064102, (2009)
[11] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, “Petal effect: a superhydrophobic state with high adhesive force”, Langmuir, 24, 4114-4119, (2008)
[12] J. S. Rowlinson, B. Widom, “Molecular theory of capillarity”, Amazon., (1982)
[13] R. N. Wenzel, “Resistance of solid surfaces to wetting by water”, Ind. Eng. Chem., 28, 988-994, (1936)
[14] A. B. D. Cassie, S. Baxter, “Wettability of porous surfaces”, Trans. Faraday Soc., 40, 546-551, (1944)
[15] J. F. Joanny, P. G. de Gennes, “A model for contact angle hysteresis”, Journal of Chemical Physics, 81, 552-562, (1984)
[16] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng, H. K. Tsao, “Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning”, Langmuir, 27, 6890-6896, (2011)

*PART II: Meniscus-Climbing Object
[1] N. Cabeo, “Philosophia Magnetica” , Ferrara, lib. ii, cap. 20. (1629)
[2] J. A. Segner, Comment. Soc. Reg. Gott., 1, 301. (1751)
[3] T. Young, Coiiected Works, 1, 418. (1805)
[4] D. L. Hu, B. Chan, J. W. M. Bush, “The hydrodynamics of water strider locomotion”, Nature, 424, 663-666, (2003)
[5] D. L. Hu, J. W. M. Bush, “Meniscus-climbing insects”, Nature, 437, 733-736, (2005)
[6] Y. Yu, M. Guo, X. Li, Q. S. Zheng, “Meniscus-climbing behavior and its minimum free-energy mechanism”, Langmuir, 23, 10546-10550, (2007)
[7] C. W. Extrand, S. I. Moon, “Using the flotation of a single sphere to measure and model capillary forces”, Langmuir, 25, 6239-6244, (2009)
[8] Q. Pan, M. Wang, “Miniature boats with striking loading capacity fabricated from superhydrophobic copper meshes”, Appl. Mater. Interfaces , 1, 420-423, (2009)
[9] K. D. Danov, B. Pouligny, M. I. Angelova, P. A. Kralchevsky, “Strong capillary attraction between spherical inclusions in a multilayered
lipid membrane”, Studies in Surface Science and Catalysis , 132, 519-524, (2001)
指導教授 曹恆光(Heng-kwong Tsao) 審核日期 2014-6-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明