參考文獻 |
[1]T. Søndergaard and S. I. Bozhevolnyi, "Metal nano-strip optical resonators," Optics Express 15.7 (2007): 4198-4204.
[2]K. Q. Peng, X. Wang, X. Wu, and S. T. Lee, "Fabrication and photovoltaic property of ordered macroporous silicon," Applied Physics Letters 95.14 (2009): 143119.
[3]D. M. Newman, M. L. Wears, M. Jollie, and D. Choo, "Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording," Nanotechnology 18.20 (2007): 205301.
[4]B. D. Chithrani, A. A. Ghazani, and W. C. Chan, "Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells," Nano Letters 6.4 (2006): 662-668.
[5]W. W. Wu, J. H. He, S. L. Cheng, S. W. Lee, and L. J. Chen, "Self-assembled NiSi quantum-dot arrays on epitaxial Si0.7Ge0.3 on (001) Si," Applied Physics Letters 83.9 (2003): 1836-1838.
[6]S. L. Cheng, C. H. Chung, and H. C. Lee, "A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates," Journal of The Electrochemical Society 155.11 (2008): D711-D714.
[7]W. I. Park and G. C. Yi, "Electroluminescence in n‐ZnO nanorod arrays vertically grown on p‐GaN," Advanced Materials 16.1 (2004): 87-90.
[8]X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, "Hydrogenated TiO2 nanotube arrays for supercapacitors," Nano Letters 12.3 (2012): 1690-1696.
[9]S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, "Hybrid silicon nanocone–polymer solar cells," Nano Letters 12.6 (2012): 2971-2976.
[10]Y. H. Yang, K. M. Ahn, S. M. Kang, S. H. Moon, and B. T. Ahn, "Fabrication of a high-performance poly-Si thin-film transistor using a poly-Si film prepared by silicide-enhanced rapid thermal annealing process," Electronic Materials Letters 10.6 (2014): 1081-1085.
[11]G. Liu, J. Zhang, C. K. Tan, and N. Tansu, "Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes," Photonics Journal, IEEE 5.2 (2013): 2201011-2201011.
[12]B. R. Huang, Y. K. Yang, T. C. Lin, and W. L. Yang, "A simple and low-cost technique for silicon nanowire arrays based solar cells," Solar Energy Materials and Solar Cells", 98(2012), 357-362.
[13]M. Ge, J. Rong, X. Fang, and C. Zhou, "Porous doped silicon nanowires for lithium ion battery anode with long cycle life, "Nano letters, 12(2012), 2318-2323.
[14]P. Livi, M. Kwiat, A. Shadmani, A. Pevzner, G. Navarra, J. Rothe, and A. Hierlemann, "Monolithic Integration of a Silicon Nanowire Field-Effect Transistors Array on a Complementary Metal-Oxide Semiconductor Chip for Biochemical Sensor Applications," Analytical chemistry, 87(2015), 9982-9990.
[15]W. C. Tian, Y. H. Ho, C. H. Chen, and C. Y. Kuo, "Sensing performance of precisely ordered TiO2 nanowire gas sensors fabricated by electron-beam lithography," Sensors 13.1 (2013): 865-874.
[16]F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al-Sayari, A. Al-Hajry, and M. S. Al-Assiri, "A capacitive chemical sensor based on porous silicon for detection of polar and non-polar organic solvents," Applied Surface Science, 307(2014), 704-711.
[17]L. B. Ahmed, S. Naama, A. Keffous, A. Hassein-Bey, and T. Hadjersi, "H 2 sensing properties of modified silicon nanowires," Progress in Natural Science: Materials International, 25(2015), 101-110.
[18]F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al‐Sayari, A. Al‐Hajry, and M. S. Al‐Assiri, "Electrical porous silicon sensor for detection of various organic molecules in liquid phase," physica status solidi (a), 212(8), 1851-1857.
[19]G. J. Zhang and Y. Ning, "Silicon nanowire biosensor and its applications in disease diagnostics: a review," Analytica Chimica Acta 749 (2012): 1-15.
[20]F. Zhang, T. Song, and B. Sun, "Conjugated polymer–silicon nanowire array hybrid Schottky diode for solar cell application, "Nanotechnology 23.19 (2012): 194006.
[21]K. Karki, E. Epstein, J. H. Cho, Z. Jia, T. Li, S. T. Picraux, C. Wang and J. Cumings, "Lithium-assisted electrochemical welding in silicon nanowire battery electrodes," Nano Letters 12.3 (2012): 1392-1397.
[22]A. D. Mohite, D. E. Perea, S. Singh, S. A. Dayeh, I. H. Campbell, S. T. Picraux, and H. Htoon, "Highly efficient charge separation and collection across in situ doped axial VLS-grown Si nanowire p–n junctions," Nano Letters 12.4 (2012): 1965-1971.
[23]S. Misra, L. Yu, M. Foldyna, and P. R. i Cabarrocas, "High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires," Solar Energy Materials and Solar Cells 118 (2013): 90-95.
[24]Y. Li, P. Liang, X. Yang, H. Cai, Q. You, J. Sun, N. Xu and J. Wu, "Fabrication and short-wavelength light emission of Si nanowires grown via quasi solid–liquid–solid mechanism," Materials Letters 134 (2014): 5-8.
[25]L. Yu and P. R. i Cabarrocas, "Morphology control and growth dynamics of in-plane solid–liquid–solid silicon nanowires," Physica E: Low-dimensional Systems and Nanostructures 44.6 (2012): 1045-1049.
[26]N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, "Nucleation and growth of Si nanowires from silicon oxide," Physical Review B 58.24 (1998): R16024.
[27]R. Q. Zhang, Y. Lifshitz, and S. T. Lee, "Oxide‐assisted growth of semiconducting nanowires," Advanced Materials 15.7‐8 (2003): 635-640.
[28]B. Ozdemir, M. Kulakci, R. Turan, and H. E. Unalan, "Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires," Nanotechnology 22.15 (2011): 155606.
[29]M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, "Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching," The Journal of Physical Chemistry C 112.12 (2008): 4444-4450.
[30]J. Nakamura, K. Higuchi, and K. Maenaka, "Vertical Si nanowire with ultra-high-aspect-ratio by combined top-down processing technique," Microsystem Technologies 19.3 (2013): 433-438.
[31]Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz and U. Gösele, "Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching," Nano Letters 8.9 (2008): 3046-3051.
[32]W. Chern, K. Hsu, I. S. Chun, B. P. D. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Letters 10.5 (2010): 1582-1588.
[33]Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, "Metal‐assisted chemical etching of silicon: a review," Advanced Materials 23.2 (2011): 285-308.
[34]X. Gou, G.Wang, J. Yang, J. Park, and D.Wexler, "Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons," Journal of Materials Chemistry, 18(2008), 965-969.
[35]H. Xu, G. Zhu, D. Zheng, C. Xi, X. Xu, and X. Shen, "Porous CuO superstructure: precursor-mediated fabrication, gas sensing and photocatalytic properties," Journal of colloid and interface science, 383(2012), 75-81.
[36]J. Dhakshinamoorthy, and P. Biji, "New Insights Towards Electron Transport Mechanism of Highly Efficient p-Type CuO (111) Nanocuboids-Based H2S Gas Sensor." The Journal of Physical Chemistry C120.7 (2016): 4087-4096.
[37]Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, and L. Zheng, "High-sensitivity humidity sensor based on a single SnO2 nanowire," Journal of the American Chemical Society, 129(2007), 6070-6071.
[38]Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, and L. Luo, "Zinc oxide nanorod and nanowire for humidity sensor," Applied Surface Science, 242(2005), 212-217.
[39]H. Nguyen, and S. A. El-Safty, "Meso-and macroporous Co3O4 nanorods for effective VOC gas sensors," The Journal of Physical Chemistry C, 115(2011), 8466-8474.
[40]R. S. Wagner, W. C. Ellis, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth", Appl. Phys. Lett. 4 (1964) 89-90.
[41]Y. J. Hong, C. H. Lee, J. B. Park, S. J. An, G. C. Yi, "GaN nanowire/thin film vertical structure p–n junction light-emitting diodes," Applied Physics Letters 103 (2013) 261116.
[42]X. X. Qi, J. Liang, C. Y. Yu, S. F. Ma, X. G. Liu, B. S. Xu, "Facile synthesis of interconnected SiC nanowire networks on silicon substrate," Materials Letters 116 (2014) 68-70.
[43]C. Zhang, X. L. Li, "Planar GaAs nanowire tri-gate MOSFETs by vapor-liquid-solid growth Solid-State," Electronics 93 (2014) 40–42.
[44]H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, S. Q. Feng, "Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism," Chemical Physics Letters. 323 (2000) 224–228.
[45]D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, S. Q. Feng, "Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism," Physica E9 (2001) 305-309.
[46]E. K. Lee, B. L. Choi, Y. D. Park, Y. Kuk, S. Y. Kwon, H. J. Kim, "Device Fabrication with Solid–Liquid–Solid Grown Silicon Nanowires," Nanotechnology 19 (2008) 185701.
[47]N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, "Nucleation and growth of Si nanowires from silicon oxide," PHYSICAL REVIEW B 58 (1998) 24.
[48]R. Q. Zhang, Y. Lifshitz and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires,” Adv. Mater. 15 (2003) 7-8.
[49]Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, "Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching," NANO LETTERS 8 (2008) 3046-3051.
[50]H. Fang, Y. Wu, J. Zhao, and J. Zhu, "Silver Catalysis in the Fabrication of Silicon Nanowire Arrays," Nanotechnology 17 (2006) 3768-3774.
[51]S. M. Su, L. H. Lin, Z. C. Li, J. Y. Feng and Z. J. Zhang, "The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays," Nanoscale Research Letters 8 (2013) 405.
[52]X. Li. and P. W. Bohn, "Metal-assisted Chemical Etching in HF/H2O2 Produces Porous Silicon," Appl. Phys. Lett. 77 (2000) 2572-2574
[53]N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub,and O. Elkechai, "Au-Assited Electroless Etching of Silicon in Aqueous HF/H2O2 Solution," Appl. Surf. Sci. 255 (2009) 6210-6216.
[54]H. Fang, Y. Wu, J. Zhao, and J. Zhu, "Silver Catalysis in the Fabrication of Silicon Nanowire Arrays," Nanotechnology 17 (2006) 3768-3774.
[55]K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, "Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry," Adv. Mater. 14 (2002) 1164-1167.
[56]Y. Y. Song, Z. D. Gao, J. J. Kelly, and X. H. Xia, "Galvanic Deposition of Nanostructured Noble-Metal Films on Silicon," Electrochemical and Solid-State Letters 8 (2005) 10.
[57]K. Peng, Y. Yan, S. Gao and J. Zhu, "Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition," Advanced Functional Materials 13 (2003) 127–132.
[58]K. Q. Peng, Z. P. Huang and J. Zhu, "Fabrication of Large-Area Silicon Nanowire p–n Junction Diode Arrays," Advanced Materials 16 (2004) 73–76.
[59]K. Q. Peng, J. Zhu, "Morphological selection of electroless metal deposits
on silicon in aqueous fluoride solution," Electrochimica Acta 49 (2004) 2563–2568.
[60]M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, "Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching," J. Phys. Chem. C 112 (2008)4444-4450.
[61]T. Qiu, X. L. Wu, Y. F. Mei, P. K. Chu, G. G. Siu, "Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method," Appl. Phys. A 81 (2005) 669–671.
[62]Z. P. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, "Metal-Assisted Chemical Etching of Silicon: A Review," Adv. Mater 23 (2011) 285–308.
[63]H. Omar, A. M. M. Jani, M. Rusop, and S. Abdullah, "The influence of H2O2 concentration to the structure of silicon nanowire growth by metal-assisted chemical etching." In INTERNATIONAL CONFERENCE ON NANO-ELECTRONIC TECHNOLOGY DEVICES AND MATERIALS 2015 (IC-NET 2015) (Vol. 1733, No. 1, p. 020016). AIP Publishing
[64]Y. Kobayashi, and S. Adachi, "Properties of Si nanowires synthesized by galvanic cell reaction." Japanese Journal of Applied Physics, 49(2010), 075002.
[65]H. Chen, H. Wang, X. H. Zhang, C. S. Lee, and S. T. Lee, "Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles," Nano Lett. 10 (2010) 864–868.
[66]F. Khan, S. H. Baek, and J. H. Kim, "Dependence of Performance of Si Nanowire Solar Cells on Geometry of the Nanowires," The Scientific World Journal 2014 (2014) 7 .
[67]Y. J. Hung, and S. L. Lee. "Manipulating the antireflective properties of vertically-aligned silicon nanowires." Solar Energy Materials and Solar Cells 130 (2014): 573-581.
[68]H. D. Um, J. Y. Jung, H. S. Seo, K. T. Park, S. W. Jee, S. A. Moiz, and J. H. Lee, "Silicon Nanowire Array Solar Cell Prepared by Metal-Induced Electroless Etching with a Novel Processing Technology," Japanese Journal of Applied Physics 49 (2010) 2.
[69]E. Mulazimoglu, et al. "Silicon nanowire network metal-semiconductor-metal photodetectors." Applied Physics Letters 103.8 (2013): 083114.
[70]K. Das, et al. "Single Si nanowire (diameter≤ 100 nm) based polarization sensitive near-infrared photodetector with ultra-high responsivity." Nanoscale6.19 (2014): 11232-11239.
[71]X. J. Chen, et al. "Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification." Sensors and Actuators B: Chemical 156.2 (2011): 631-636.
[72]B. R. Huang, Y. K. Yang, and H. L. Cheng. "Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor." Nanotechnology 24.47 (2013): 475502.
[73]M. Jouiad, and N. Adel "Porous silicon nanowires: synthesis and applications." Biointerface Research in Applied Chemistry 5.2 (2015).
[74]I. Iatsunskyi, V. Smyntyna, M. Pavlenko, O. Kanevska, Y. Kirik, , and V. Myndrul, "Ammonia detection using optical reflectance from porous silicon formed by metal-assisted chemical etching." SPIE Security+ Defence. International Society for Optics and Photonics, 2013.
[75]U. Weimar, and N. Barsan, "n and p-type Semiconducting Metal Oxides Based Gas Sensors; Influence of Conduction Type on Sensitivity, " Meeting Abstracts. No. 46. The Electrochemical Society, 2009.
[76]C. J. Shao, Y. Q. Chang, and Y. Long, "High performance of nanostructured ZnO film gas sensor at room temperature," Sensors and Actuators B: Chemical 204 (2014): 666-672.
[77]S. Naama, et al, "CO2 gas sensor based on silicon nanowires modified with metal nanoparticles." Materials Science in Semiconductor Processing 38 (2015): 367-372.
[78]F. Demami, et al, "Silicon nan Pichon, Laurent, et al. "Ammonia sensors based on suspended silicon nanowires." Procedia Engineering 87 (2014): 1003-1006. owires based resistors as gas sensors."Sensors and Actuators B: Chemical 170 (2012): 158-162.
[79]X. P. Chen, et al, "Nanowire-based gas sensors." Sensors and Actuators B: Chemical 177 (2013): 178-195.
[80]F. Demami, et al, "Silicon nanowires synthesis for chemical sensor applications." Procedia Engineering 5 (2010): 351-354.
[81]A. A. Talin, et al, "Large area, dense silicon nanowire array chemical sensors." Applied physics letters 89.15 (2006): 153102.
[82]N. K. Ali, M. R. Hashim, and A. A. Aziz, "Effects of surface passivation in porous silicon as H2 gas sensor." Solid-State Electronics 52.7 (2008): 1071-1074.
[83]M. C. McAlpine, et al, "Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors." Nature materials 6.5 (2007): 379-384.
[84]F. A. Harraz, et al, "A capacitive chemical sensor based on porous silicon for detection of polar and non-polar organic solvents." Applied Surface Science307 (2014): 704-711.
[85]M. D. Li, et al, "Microstructure characterization and NO2-sensing properties of porous silicon with intermediate pore size." Applied Surface Science 268 (2013): 188-194.
[86]Mi. D. Li, et al, "NO2 sensing performance of p-type intermediate size porous silicon by a galvanostatic electrochemical etching method." Electrochimica Acta113 (2013): 354-360.
[87]U. Weimar, and N. Barsan, "n and p-type Semiconducting Metal Oxides Based Gas Sensors; Influence of Conduction Type on Sensitivity." Meeting Abstracts. No. 46. The Electrochemical Society, 2009.
[88]N. Barsan, and U. Weimar, "Conduction model of metal oxide gas sensors." Journal of Electroceramics 7.3 (2001): 143-167.
[89]C. L. Hsu, et al, "Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires." Sensors and Actuators B: Chemical182 (2013): 190-196.
[90]R. J. B. Balaguru, and B. G. Jeyaprakash, "Mimic of a Gas sensor, Metal Oxide Gas Sensing Mechanism, Factors Influencing the Sensor Performance and Role of nanomaterials based gas sensors." NPTEL–Electrical & Electronics Engineering–Semiconductor Nanodevices (2004)
[91]H. Liu, et al, "Tin oxide films for nitrogen dioxide gas detection at low temperatures." Sensors and Actuators B: Chemical 177 (2013): 460-466.
[92]Y. S. Kim, et al, "CuO nanowire gas sensors for air quality control in automotive cabin." Sensors and Actuators B: Chemical 135.1 (2008): 298-303.
[93]Y. M. Li, et al, "CuO particles and plates: synthesis and gas-sensor application." Materials Research Bulletin 43.8 (2008): 2380-2385.
[94]A. Kolmakov, et al, "Detection of CO and O2 using tin oxide nanowire sensors." Advanced Materials 15.12 (2003): 997-1000.
[95]Y. X. Qin, Y. Liu, and Y. Y. Wang, "Aligned Array of Porous Silicon Nanowires for Gas-Sensing Application." ECS Journal of Solid State Science and Technology 5.7 (2016): P380-P383.
[96]C. B. Li, et al, "Impact of ammonia on the electrical properties of p-type Si nanowire arrays." Journal of Applied Physics 114.17 (2013): 173702.
[97]C. B. Li, et al, "Conductance modulation of Si nanowire arrays." Applied Physics Letters 101.22 (2012): 222101.
[98]F. J. Feigl, et al, "The effects of water on oxide and interface trapped charge generation in thermal SiO2 films." Journal of Applied Physics 52.9 (1981): 5665-5682.
[99]Z. Chen, and C. Cao, "Effect of size in nanowires grown by the vapor-liquid-solid mechanism." Applied physics letters, 88(2006), 143118. |