博碩士論文 101324044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:54.159.64.172
姓名 賴怡儒(Yi-Ru Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 不同種類矽晶奈米線陣列之氣體感測特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 首先,本研究利用一種以相對低成本且高產率的金屬催化無電鍍蝕刻法成功地在p型及n型矽基材上製備大面積且準直排列之矽晶奈米線與多孔性矽晶奈米線,以供為氣體感測量測。實驗中利用部分試片以氧氣電漿或熱氧化將平板矽與矽晶奈米線進行氧化,使其表面形成一層薄氧化層。研究中也藉由SEM、TEM及SAED針對表面形貌、晶體結構及結晶方向進行一系列鑑定與分析。在氣體感測量測中,具有不同形式氧化層之各式矽晶試片皆具有相同氣體感測特性。由實驗結果可發現在室溫下矽晶奈米線感測試片相較於平板矽感測試片具有較佳的感測特性且靈敏度隨偵測濃度增加而增加,此結果可歸因於矽晶奈米線具有高比表面積所致。
此外,由實驗結果亦可發現不同氧化層之矽基材具有相同的氣體感測行為,然而若將表面氧化層移除則所有矽晶試片皆會失去氣體感測能力。不僅如此,經由一系列氣體偵測實驗顯示n型及p型之各式矽晶試片出乎預料的竟皆表現出與傳統p型金屬氧化物半導體相同之氣體感測特性。此異常的結果,推測矽基材的氣體感測行為可能與矽基材本質無直接相關性,反而是矽基材表面的氧化層在氣體感測機制中扮演關鍵的角色。
摘要(英) In this study, p-type and n-type (001) Si wafers were used as the starting materials. To fabricate large-area, vertically aligned silicon nanowires (SiNWs) and porous SiNWs on (001) Si substrate, a low-cost and high-throughput method which is based on metal-assisted electroless chemical etching process was adopted. Some of the blank-Si and SiNWs samples were oxidized by oxygen plasma treatments or thermal oxidation to grow a thin oxide layer on the surfaces. The surface morphologies, crystal structures and crystallographic orientations of the different types of SiNWs samples produced here have been systematically investigated by the SEM, TEM images and SAED analyses. For gas sensing experiments, the blank-Si and SiNW samples were exposed to various concentrations of ammonia and oxygen gases at room temperature. The observed results clearly reveal that compared with blank-Si sample, the vertical Si nanowires sample possesses good gas sensing characteristics at room temperature and their sensitivity increasing with increasing gas concentrations. The enhanced gas-sensing properties can be attributed to the high specific surface of the SiNWs samples. It was also found that the Si-based samples with different oxide shells have almost the same gas-sensing performances. However, if the surface oxide shells were removed, the Si-based samples would lose their gas-sensing ability. Furthermore, contrary to expectation, it was surprising to find that both n-type and p-type Si-based samples exhibited the same characteristics gas-sensing as the conventional p-type metal oxide semiconductors. The abnormal results suggest that the gas-sensing behaviors of Si-based samples may not directly relate to the type of Si substrates. The oxide shells of Si-based samples may play crucial role in the gas-sensing mechanism.
關鍵字(中) ★ 氣體感測
★ 無電鍍金屬催化化學蝕刻
★ 矽晶奈米線
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
第一章 前言及文獻回顧 1
第二章 實驗步驟及儀器設備 18
2-1 實驗步驟 18
2-1-1 矽基材使用前處理 18
2-1-2 無電鍍金屬催化蝕刻法製備不同種類之矽單晶奈米線陣列 18
2-1-2 無電鍍金屬催化蝕刻法製備多孔性矽單晶奈米線陣列 19
2-1-4 矽基材及矽晶奈米線之氧化製程 19
2-1-4-1 原生氧化層(Native oxide) 19
2-1-4-1 氧電漿(Oxygen Plasma) 20
2-1-4-1 熱氧化(Thermal oxidation) 20
2-1-5蒸鍍a-Si與SiO2 薄膜 20
2-1-6製備氣體感測元件 21
2-2 試片分析方法 21
2-2-1 掃描式電子顯微鏡 21
2-2-2 穿透式電子顯微鏡 22
2-2-3 氣體感測性質量測裝置 22
第三章 結果與討論 23
3-1 p型平板矽基材之氣體感測分析 23
3-1-1 氣體感測元件之電極製備 23
3-1-2 氣體分子與感測元件表面變化之影響 23
3-1-3 (001)矽基材經不同氧化處理之氣體感測分析 24
3-1-4不同方向之矽基材經不同氧化處理 26
3-2 p型矽晶奈米線之氣體感測性質分析 28
3-2-1 製備不同氧化處理之矽單晶奈米線 28
3-2-1-1 原生氧化層(Native Oxide) 29
3-2-1-2 氧氣電漿(Oxygen Plasma) 30
3-2-1-3 熱氧化 (Thermal Oxidation) 30
3-2-2矽晶奈米線氣體感測元件之電極製備 31
3-2-3不同氧化處理之矽晶奈米線 31
3-2-4多孔性矽晶奈米線之製備與氣體感測性質量測 33
3-2-5 p型矽之氣體感測機制 34
3-3 n型矽基材之氣體感測性質分析 35
3-5-2製備不同氧化處理之矽晶奈米線與多孔性矽晶奈米線 36
3-5-3不同結構之矽晶奈米線 36
3-5-4 n型矽之氣體感測機制 37
3-4 矽氧化層形成方式之氣體感測性質量測 37
3-6-1蒸鍍a-Si與SiO2薄膜於矽基材上 38
第四章 結論與未來展望 39
參考文獻 41
表目錄 48
圖目錄 50

參考文獻 [1]T. Søndergaard and S. I. Bozhevolnyi, "Metal nano-strip optical resonators," Optics Express 15.7 (2007): 4198-4204.
[2]K. Q. Peng, X. Wang, X. Wu, and S. T. Lee, "Fabrication and photovoltaic property of ordered macroporous silicon," Applied Physics Letters 95.14 (2009): 143119.
[3]D. M. Newman, M. L. Wears, M. Jollie, and D. Choo, "Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording," Nanotechnology 18.20 (2007): 205301.
[4]B. D. Chithrani, A. A. Ghazani, and W. C. Chan, "Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells," Nano Letters 6.4 (2006): 662-668.
[5]W. W. Wu, J. H. He, S. L. Cheng, S. W. Lee, and L. J. Chen, "Self-assembled NiSi quantum-dot arrays on epitaxial Si0.7Ge0.3 on (001) Si," Applied Physics Letters 83.9 (2003): 1836-1838.
[6]S. L. Cheng, C. H. Chung, and H. C. Lee, "A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates," Journal of The Electrochemical Society 155.11 (2008): D711-D714.
[7]W. I. Park and G. C. Yi, "Electroluminescence in n‐ZnO nanorod arrays vertically grown on p‐GaN," Advanced Materials 16.1 (2004): 87-90.
[8]X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, "Hydrogenated TiO2 nanotube arrays for supercapacitors," Nano Letters 12.3 (2012): 1690-1696.
[9]S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, "Hybrid silicon nanocone–polymer solar cells," Nano Letters 12.6 (2012): 2971-2976.
[10]Y. H. Yang, K. M. Ahn, S. M. Kang, S. H. Moon, and B. T. Ahn, "Fabrication of a high-performance poly-Si thin-film transistor using a poly-Si film prepared by silicide-enhanced rapid thermal annealing process," Electronic Materials Letters 10.6 (2014): 1081-1085.
[11]G. Liu, J. Zhang, C. K. Tan, and N. Tansu, "Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes," Photonics Journal, IEEE 5.2 (2013): 2201011-2201011.
[12]B. R. Huang, Y. K. Yang, T. C. Lin, and W. L. Yang, "A simple and low-cost technique for silicon nanowire arrays based solar cells," Solar Energy Materials and Solar Cells", 98(2012), 357-362.
[13]M. Ge, J. Rong, X. Fang, and C. Zhou, "Porous doped silicon nanowires for lithium ion battery anode with long cycle life, "Nano letters, 12(2012), 2318-2323.
[14]P. Livi, M. Kwiat, A. Shadmani, A. Pevzner, G. Navarra, J. Rothe, and A. Hierlemann, "Monolithic Integration of a Silicon Nanowire Field-Effect Transistors Array on a Complementary Metal-Oxide Semiconductor Chip for Biochemical Sensor Applications," Analytical chemistry, 87(2015), 9982-9990.
[15]W. C. Tian, Y. H. Ho, C. H. Chen, and C. Y. Kuo, "Sensing performance of precisely ordered TiO2 nanowire gas sensors fabricated by electron-beam lithography," Sensors 13.1 (2013): 865-874.
[16]F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al-Sayari, A. Al-Hajry, and M. S. Al-Assiri, "A capacitive chemical sensor based on porous silicon for detection of polar and non-polar organic solvents," Applied Surface Science, 307(2014), 704-711.
[17]L. B. Ahmed, S. Naama, A. Keffous, A. Hassein-Bey, and T. Hadjersi, "H 2 sensing properties of modified silicon nanowires," Progress in Natural Science: Materials International, 25(2015), 101-110.
[18]F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al‐Sayari, A. Al‐Hajry, and M. S. Al‐Assiri, "Electrical porous silicon sensor for detection of various organic molecules in liquid phase," physica status solidi (a), 212(8), 1851-1857.
[19]G. J. Zhang and Y. Ning, "Silicon nanowire biosensor and its applications in disease diagnostics: a review," Analytica Chimica Acta 749 (2012): 1-15.
[20]F. Zhang, T. Song, and B. Sun, "Conjugated polymer–silicon nanowire array hybrid Schottky diode for solar cell application, "Nanotechnology 23.19 (2012): 194006.
[21]K. Karki, E. Epstein, J. H. Cho, Z. Jia, T. Li, S. T. Picraux, C. Wang and J. Cumings, "Lithium-assisted electrochemical welding in silicon nanowire battery electrodes," Nano Letters 12.3 (2012): 1392-1397.
[22]A. D. Mohite, D. E. Perea, S. Singh, S. A. Dayeh, I. H. Campbell, S. T. Picraux, and H. Htoon, "Highly efficient charge separation and collection across in situ doped axial VLS-grown Si nanowire p–n junctions," Nano Letters 12.4 (2012): 1965-1971.
[23]S. Misra, L. Yu, M. Foldyna, and P. R. i Cabarrocas, "High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires," Solar Energy Materials and Solar Cells 118 (2013): 90-95.
[24]Y. Li, P. Liang, X. Yang, H. Cai, Q. You, J. Sun, N. Xu and J. Wu, "Fabrication and short-wavelength light emission of Si nanowires grown via quasi solid–liquid–solid mechanism," Materials Letters 134 (2014): 5-8.
[25]L. Yu and P. R. i Cabarrocas, "Morphology control and growth dynamics of in-plane solid–liquid–solid silicon nanowires," Physica E: Low-dimensional Systems and Nanostructures 44.6 (2012): 1045-1049.
[26]N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, "Nucleation and growth of Si nanowires from silicon oxide," Physical Review B 58.24 (1998): R16024.
[27]R. Q. Zhang, Y. Lifshitz, and S. T. Lee, "Oxide‐assisted growth of semiconducting nanowires," Advanced Materials 15.7‐8 (2003): 635-640.
[28]B. Ozdemir, M. Kulakci, R. Turan, and H. E. Unalan, "Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires," Nanotechnology 22.15 (2011): 155606.
[29]M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, "Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching," The Journal of Physical Chemistry C 112.12 (2008): 4444-4450.
[30]J. Nakamura, K. Higuchi, and K. Maenaka, "Vertical Si nanowire with ultra-high-aspect-ratio by combined top-down processing technique," Microsystem Technologies 19.3 (2013): 433-438.
[31]Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz and U. Gösele, "Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching," Nano Letters 8.9 (2008): 3046-3051.
[32]W. Chern, K. Hsu, I. S. Chun, B. P. D. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Letters 10.5 (2010): 1582-1588.
[33]Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, "Metal‐assisted chemical etching of silicon: a review," Advanced Materials 23.2 (2011): 285-308.
[34]X. Gou, G.Wang, J. Yang, J. Park, and D.Wexler, "Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons," Journal of Materials Chemistry, 18(2008), 965-969.
[35]H. Xu, G. Zhu, D. Zheng, C. Xi, X. Xu, and X. Shen, "Porous CuO superstructure: precursor-mediated fabrication, gas sensing and photocatalytic properties," Journal of colloid and interface science, 383(2012), 75-81.
[36]J. Dhakshinamoorthy, and P. Biji, "New Insights Towards Electron Transport Mechanism of Highly Efficient p-Type CuO (111) Nanocuboids-Based H2S Gas Sensor." The Journal of Physical Chemistry C120.7 (2016): 4087-4096.
[37]Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, and L. Zheng, "High-sensitivity humidity sensor based on a single SnO2 nanowire," Journal of the American Chemical Society, 129(2007), 6070-6071.
[38]Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, and L. Luo, "Zinc oxide nanorod and nanowire for humidity sensor," Applied Surface Science, 242(2005), 212-217.
[39]H. Nguyen, and S. A. El-Safty, "Meso-and macroporous Co3O4 nanorods for effective VOC gas sensors," The Journal of Physical Chemistry C, 115(2011), 8466-8474.
[40]R. S. Wagner, W. C. Ellis, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth", Appl. Phys. Lett. 4 (1964) 89-90.
[41]Y. J. Hong, C. H. Lee, J. B. Park, S. J. An, G. C. Yi, "GaN nanowire/thin film vertical structure p–n junction light-emitting diodes," Applied Physics Letters 103 (2013) 261116.
[42]X. X. Qi, J. Liang, C. Y. Yu, S. F. Ma, X. G. Liu, B. S. Xu, "Facile synthesis of interconnected SiC nanowire networks on silicon substrate," Materials Letters 116 (2014) 68-70.
[43]C. Zhang, X. L. Li, "Planar GaAs nanowire tri-gate MOSFETs by vapor-liquid-solid growth Solid-State," Electronics 93 (2014) 40–42.
[44]H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, S. Q. Feng, "Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism," Chemical Physics Letters. 323 (2000) 224–228.
[45]D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, S. Q. Feng, "Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism," Physica E9 (2001) 305-309.
[46]E. K. Lee, B. L. Choi, Y. D. Park, Y. Kuk, S. Y. Kwon, H. J. Kim, "Device Fabrication with Solid–Liquid–Solid Grown Silicon Nanowires," Nanotechnology 19 (2008) 185701.
[47]N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, "Nucleation and growth of Si nanowires from silicon oxide," PHYSICAL REVIEW B 58 (1998) 24.
[48]R. Q. Zhang, Y. Lifshitz and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires,” Adv. Mater. 15 (2003) 7-8.
[49]Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, "Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching," NANO LETTERS 8 (2008) 3046-3051.
[50]H. Fang, Y. Wu, J. Zhao, and J. Zhu, "Silver Catalysis in the Fabrication of Silicon Nanowire Arrays," Nanotechnology 17 (2006) 3768-3774.
[51]S. M. Su, L. H. Lin, Z. C. Li, J. Y. Feng and Z. J. Zhang, "The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays," Nanoscale Research Letters 8 (2013) 405.
[52]X. Li. and P. W. Bohn, "Metal-assisted Chemical Etching in HF/H2O2 Produces Porous Silicon," Appl. Phys. Lett. 77 (2000) 2572-2574
[53]N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub,and O. Elkechai, "Au-Assited Electroless Etching of Silicon in Aqueous HF/H2O2 Solution," Appl. Surf. Sci. 255 (2009) 6210-6216.
[54]H. Fang, Y. Wu, J. Zhao, and J. Zhu, "Silver Catalysis in the Fabrication of Silicon Nanowire Arrays," Nanotechnology 17 (2006) 3768-3774.
[55]K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, "Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry," Adv. Mater. 14 (2002) 1164-1167.
[56]Y. Y. Song, Z. D. Gao, J. J. Kelly, and X. H. Xia, "Galvanic Deposition of Nanostructured Noble-Metal Films on Silicon," Electrochemical and Solid-State Letters 8 (2005) 10.
[57]K. Peng, Y. Yan, S. Gao and J. Zhu, "Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition," Advanced Functional Materials 13 (2003) 127–132.
[58]K. Q. Peng, Z. P. Huang and J. Zhu, "Fabrication of Large-Area Silicon Nanowire p–n Junction Diode Arrays," Advanced Materials 16 (2004) 73–76.
[59]K. Q. Peng, J. Zhu, "Morphological selection of electroless metal deposits
on silicon in aqueous fluoride solution," Electrochimica Acta 49 (2004) 2563–2568.
[60]M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, "Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching," J. Phys. Chem. C 112 (2008)4444-4450.
[61]T. Qiu, X. L. Wu, Y. F. Mei, P. K. Chu, G. G. Siu, "Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method," Appl. Phys. A 81 (2005) 669–671.
[62]Z. P. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, "Metal-Assisted Chemical Etching of Silicon: A Review," Adv. Mater 23 (2011) 285–308.
[63]H. Omar, A. M. M. Jani, M. Rusop, and S. Abdullah, "The influence of H2O2 concentration to the structure of silicon nanowire growth by metal-assisted chemical etching." In INTERNATIONAL CONFERENCE ON NANO-ELECTRONIC TECHNOLOGY DEVICES AND MATERIALS 2015 (IC-NET 2015) (Vol. 1733, No. 1, p. 020016). AIP Publishing
[64]Y. Kobayashi, and S. Adachi, "Properties of Si nanowires synthesized by galvanic cell reaction." Japanese Journal of Applied Physics, 49(2010), 075002.
[65]H. Chen, H. Wang, X. H. Zhang, C. S. Lee, and S. T. Lee, "Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles," Nano Lett. 10 (2010) 864–868.
[66]F. Khan, S. H. Baek, and J. H. Kim, "Dependence of Performance of Si Nanowire Solar Cells on Geometry of the Nanowires," The Scientific World Journal 2014 (2014) 7 .
[67]Y. J. Hung, and S. L. Lee. "Manipulating the antireflective properties of vertically-aligned silicon nanowires." Solar Energy Materials and Solar Cells 130 (2014): 573-581.
[68]H. D. Um, J. Y. Jung, H. S. Seo, K. T. Park, S. W. Jee, S. A. Moiz, and J. H. Lee, "Silicon Nanowire Array Solar Cell Prepared by Metal-Induced Electroless Etching with a Novel Processing Technology," Japanese Journal of Applied Physics 49 (2010) 2.
[69]E. Mulazimoglu, et al. "Silicon nanowire network metal-semiconductor-metal photodetectors." Applied Physics Letters 103.8 (2013): 083114.
[70]K. Das, et al. "Single Si nanowire (diameter≤ 100 nm) based polarization sensitive near-infrared photodetector with ultra-high responsivity." Nanoscale6.19 (2014): 11232-11239.
[71]X. J. Chen, et al. "Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification." Sensors and Actuators B: Chemical 156.2 (2011): 631-636.
[72]B. R. Huang, Y. K. Yang, and H. L. Cheng. "Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor." Nanotechnology 24.47 (2013): 475502.
[73]M. Jouiad, and N. Adel "Porous silicon nanowires: synthesis and applications." Biointerface Research in Applied Chemistry 5.2 (2015).
[74]I. Iatsunskyi, V. Smyntyna, M. Pavlenko, O. Kanevska, Y. Kirik, , and V. Myndrul, "Ammonia detection using optical reflectance from porous silicon formed by metal-assisted chemical etching." SPIE Security+ Defence. International Society for Optics and Photonics, 2013.
[75]U. Weimar, and N. Barsan, "n and p-type Semiconducting Metal Oxides Based Gas Sensors; Influence of Conduction Type on Sensitivity, " Meeting Abstracts. No. 46. The Electrochemical Society, 2009.
[76]C. J. Shao, Y. Q. Chang, and Y. Long, "High performance of nanostructured ZnO film gas sensor at room temperature," Sensors and Actuators B: Chemical 204 (2014): 666-672.
[77]S. Naama, et al, "CO2 gas sensor based on silicon nanowires modified with metal nanoparticles." Materials Science in Semiconductor Processing 38 (2015): 367-372.
[78]F. Demami, et al, "Silicon nan Pichon, Laurent, et al. "Ammonia sensors based on suspended silicon nanowires." Procedia Engineering 87 (2014): 1003-1006. owires based resistors as gas sensors."Sensors and Actuators B: Chemical 170 (2012): 158-162.
[79]X. P. Chen, et al, "Nanowire-based gas sensors." Sensors and Actuators B: Chemical 177 (2013): 178-195.
[80]F. Demami, et al, "Silicon nanowires synthesis for chemical sensor applications." Procedia Engineering 5 (2010): 351-354.
[81]A. A. Talin, et al, "Large area, dense silicon nanowire array chemical sensors." Applied physics letters 89.15 (2006): 153102.
[82]N. K. Ali, M. R. Hashim, and A. A. Aziz, "Effects of surface passivation in porous silicon as H2 gas sensor." Solid-State Electronics 52.7 (2008): 1071-1074.
[83]M. C. McAlpine, et al, "Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors." Nature materials 6.5 (2007): 379-384.
[84]F. A. Harraz, et al, "A capacitive chemical sensor based on porous silicon for detection of polar and non-polar organic solvents." Applied Surface Science307 (2014): 704-711.
[85]M. D. Li, et al, "Microstructure characterization and NO2-sensing properties of porous silicon with intermediate pore size." Applied Surface Science 268 (2013): 188-194.
[86]Mi. D. Li, et al, "NO2 sensing performance of p-type intermediate size porous silicon by a galvanostatic electrochemical etching method." Electrochimica Acta113 (2013): 354-360.
[87]U. Weimar, and N. Barsan, "n and p-type Semiconducting Metal Oxides Based Gas Sensors; Influence of Conduction Type on Sensitivity." Meeting Abstracts. No. 46. The Electrochemical Society, 2009.
[88]N. Barsan, and U. Weimar, "Conduction model of metal oxide gas sensors." Journal of Electroceramics 7.3 (2001): 143-167.
[89]C. L. Hsu, et al, "Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires." Sensors and Actuators B: Chemical182 (2013): 190-196.
[90]R. J. B. Balaguru, and B. G. Jeyaprakash, "Mimic of a Gas sensor, Metal Oxide Gas Sensing Mechanism, Factors Influencing the Sensor Performance and Role of nanomaterials based gas sensors." NPTEL–Electrical & Electronics Engineering–Semiconductor Nanodevices (2004)
[91]H. Liu, et al, "Tin oxide films for nitrogen dioxide gas detection at low temperatures." Sensors and Actuators B: Chemical 177 (2013): 460-466.
[92]Y. S. Kim, et al, "CuO nanowire gas sensors for air quality control in automotive cabin." Sensors and Actuators B: Chemical 135.1 (2008): 298-303.
[93]Y. M. Li, et al, "CuO particles and plates: synthesis and gas-sensor application." Materials Research Bulletin 43.8 (2008): 2380-2385.
[94]A. Kolmakov, et al, "Detection of CO and O2 using tin oxide nanowire sensors." Advanced Materials 15.12 (2003): 997-1000.
[95]Y. X. Qin, Y. Liu, and Y. Y. Wang, "Aligned Array of Porous Silicon Nanowires for Gas-Sensing Application." ECS Journal of Solid State Science and Technology 5.7 (2016): P380-P383.
[96]C. B. Li, et al, "Impact of ammonia on the electrical properties of p-type Si nanowire arrays." Journal of Applied Physics 114.17 (2013): 173702.
[97]C. B. Li, et al, "Conductance modulation of Si nanowire arrays." Applied Physics Letters 101.22 (2012): 222101.
[98]F. J. Feigl, et al, "The effects of water on oxide and interface trapped charge generation in thermal SiO2 films." Journal of Applied Physics 52.9 (1981): 5665-5682.
[99]Z. Chen, and C. Cao, "Effect of size in nanowires grown by the vapor-liquid-solid mechanism." Applied physics letters, 88(2006), 143118.
指導教授 鄭紹良(Shao-Ling Cheng) 審核日期 2016-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明