博碩士論文 101324046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.226.245.48
姓名 郭詠凱(Yong-Kai Kuo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 IMPS於Ag-In-S半導體薄膜之分析與應用
(The analysis and applications of IMPS in ternary Ag-In-S thin film)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
★ 金屬氧化物與硫化物異質結構薄膜之電化學研究★ 噴霧熱裂解法製備Zn-doped n-type CuInS2 薄膜及其光電化學性質分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用超音波輔助化學水浴法搭配不同比例的鍍液成功製備出不同結晶形態的Ag-In-S薄膜,並對此材料進行物理性質及光電性質分析。實驗結果發現當[Ag]/[In]=1時為AgInS2 (Orthorhombic)晶形結構且表面則呈現塊狀樣貌;[Ag]/[In]=5時為AgIn5S8 (Cubic)晶形結構且表面呈現疊層片狀樣貌,薄膜的直接能隙在1.90 ~ 2.05 eV之間,各比例薄膜皆為n型半導體。開環電位法結果得知各薄膜的平帶電位(相對於SCE) 約在-1.09 ~ -1.23 V之間。光電性質量測結果顯示,使用犧牲試劑作為電解液,當[Ag]/[In]=3時具有最佳光電流值,在1.0 V偏壓下照射100 mW/cm2光強度的氙燈可產生1.45 mA/cm2的光電流,EIS分析結果獲得各比例的薄膜在無偏壓的條件下,皆具有相當大的表面態阻抗,隨著偏壓的增加,表面態阻抗大幅的下降且電容有增加的趨勢,使得載子能夠順利被表面態捕捉並穿透界面與電解液進行反應。最後於IMPS的分析結果中發現,隨著偏壓的增加,第一象限的半圓有隨之縮小的現象,搭配EIS的分析結論推測為半導體中少數載子與電解液的反應主導著第一象限半圓的變化,利用公式擬合得知薄膜的擴散係數、電子存活時間、表面態存活時間等係數,可以觀察到擴散係數與電子存活時間皆隨著偏壓的增加而增加,其中以[Ag]/[In]=3時具有最大的擴散係數與存活時間,利用此係數可計算出電子的擴散長度,其中[Ag]/[In]=3時有最佳的擴散長度,在1.0 V偏壓下具有1362 nm。
摘要(英) In our study, we have prepared Ag-In-S semiconductor thin film by ultrasonic chemical bath deposition. The effect of various molar ratio in solutions on the crystal, morphological and photoelectrochemical (PEC) properties of the samples was measured. According X-ray diffraction studies, it was found that when [Ag]/[In]=1 in the solution, AgInS2 was be prepared after annealed for 1h in a nitrogen environment at 400℃ in a quartz tube. However, the crystal structure will become polycrystalline AgIn5S8 gradually with increase [Ag]/[In] molar ratio. The film thickness、flat band potentials、energy band gaps of the samples were between 0.38 and 0.89 μm, -1.09 and -1.23 V vs. SCE, -1.90 and -2.05 eV, respectively. All films had appropriate absorption coefficient which upper than 105 cm-1. Under the visible light irradiation with intensity of 100mW/cm2, the photocurrent density can achieve 1.45 mA/cm2 when [Ag]/[In]=3 with applied potential of 1.0 V vs. SCE in the three-electrode system. Form EIS, the results show all of samples had surface state, with 1.0 V bias, surface state resistances will decrease quickly and capacitances will increase. Indicate the minority carriers can across the interface between thin film and electrolyte with applied potential. IMPS measurements show that first quadrant semicircle reduces with applied potential, and it can be attributed to the rate constant of minority carriers recombination with electrons or react with electrolyte. The simulation results exhibit thin film parameters, like: diffusion coefficient、electron lifetime、surface state lifetime, etc. Among these parameters, the electron lifetime has clear rise when applied bias. [Ag]/[In]=3 has longest electron lifetime, so according the function Ln=(Dnτn)1/2, the electron diffusion length can be calculated.
關鍵字(中) ★ 光觸媒
★ 半導體薄膜
★ 擴散長度
關鍵字(英) ★ thin film
★ photocatalysis
★ IMPS
★ diffusion length
論文目次 摘要 I
Abstract II
致謝 III
第1章 緒論 1
1-1 前言 1
1-2 IMPS/IMVS簡介 3
1-2-1 基本介紹 3
1-3 研究動機 4
第2章 文獻回顧 6
2-1 半導體光觸媒 6
2-1-1 半導體 6
2-1-2 光觸媒 6
2-1-3 半導體能帶彎曲 7
2-2 Ag-In-S半導體薄膜簡介 8
2-3 IMPS/IMVS 10
第3章 實驗方法 20
3-1 實驗藥品 20
3-2 實驗儀器 22
3-3 實驗流程圖 23
3-4 實驗步驟 23
3-4-1 基材清洗 23
3-4-2 超音波輔助化學水浴法製備Ag-In-S系列薄膜 24
3-5 薄膜基本性質量測 27
3-5-1 UV-vis量測 27
3-6 光電化學量測 28
3-6-1 光電極薄膜製備 28
3-6-2 光電流量測 29
3-6-3 開環電位法(OCP) 30
3-6-4 IMPS量測方式 31
第4章 數據模擬與討論 32
4-1 前言 32
4-2 DSSC之IMPS理論分析 32
4-2-1 吸收係數之改變 33
4-2-2 擴散係數之改變 34
4-2-3 載子存活時間之改變 35
4-2-4 電荷轉移速率之改變 35
4-3 半導體薄膜(速率常數理論)之IMPS圖譜分析 37
4-3-1 速率常數k3之改變 38
4-3-2 速率常數k4之改變 39
4-3-3 空間電荷電容(CSC)之改變 40
4-3-4 Helmholtz電容(CH)之改變 41
4-3-5 CSC與CH於IMPS分析之討論 42
4-4 半導體薄膜(擴散控制理論)之IMPS圖譜分析 42
4-4-1 表面態存活時間之改變 43
4-4-2 歸一化穩態光電流(ISG0)之改變 44
第5章 結果與討論 47
5-1 超音波輔助化學水浴法製備Ag-In-S薄膜 47
5-2 薄膜晶型結構分析 49
5-3 薄膜表面結構分析 51
5-4 光電流量測與分析 54
5-5 UV-vis量測與分析 58
5-6 平帶電位量測與分析 60
5-7 EIS量測與分析 62
5-8 IMPS量測與分析 65
5-9 IMPS之數據擬合 69
第6章 結論與未來規畫 76
參考文獻 78
附錄 82
參考文獻 1. Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972;238(5358).
2. Wikipedia-Sunlight. http://en.wikipedia.org/wiki/Sunlight.
3. Diwald O, Thompson TL, Zubkov T, Goralski EG, Walck SD, Yates JT. Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light. The Journal of Physical Chemistry B. 2004;108(19):6004-6008.
4. 李芳紜. 超音波輔助化學水浴法製備AgInS2薄膜之電化學阻抗頻譜分析. 中央大學. 2013.
5. Krishnan R. Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry. Encyclopedia of Electrochemistry: Wiley-VCH Verlag GmbH & Co. KGaA; 2007.
6. Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews. 1995/05/01 1995;95(3):735-758.
7. Shay J, Tell B, Schiavone L, Kasper H, Thiel F. Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures. Physical Review B. 1974;9(4):1719.
8. Cheng K-W, Liu P-H. Photoelectrochemical performances of AgInS2 film electrodes fabricated using the sulfurization of Ag–In metal precursors. Solar Energy Materials and Solar Cells. 2011;95(7):1859-1866.
9. Aguilera MLA, Hernández JRA, Trujillo MAG, López MO, Puente GC. Photoluminescence studies of chalcopyrite and orthorhombic AgInS2 thin films deposited by spray pyrolysis technique. Thin Solid Films. 2007;515(15 SPEC. ISS.):6272-6275.
10. Cheng K-W, Huang C-M, Pan G-T, Chang W-S, Lee T-C, Yang TCK. The physical properties and photoresponse of AgIn5S8 polycrystalline film electrodes fabricated by chemical bath deposition. Journal of Photochemistry and Photobiology A: Chemistry. 2007;190(1):77-87.
11. Wang C-H, Cheng K-W, Tseng C-J. Photoelectrochemical properties of AgInS2 thin films prepared using electrodeposition. Solar Energy Materials and Solar Cells. 2011;95(2):453-461.
12. Delgado G, Mora A, Pineda C, Tinoco T. Simultaneous Rietveld refinement of three phases in the Ag-In-S semiconducting system from X-ray powder diffraction. Materials research bulletin. 2001;36(13):2507-2517.
13. Bisquert J, Vikhrenko VS. Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. The Journal of Physical Chemistry B. 2004;108(7):2313-2322.
14. Dloczik L, Ileperuma O, Lauermann I, et al. Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. The Journal of Physical Chemistry B. 1997;101(49):10281-10289.
15. Soedergren S, Hagfeldt A, Olsson J, Lindquist S-E. Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells. The Journal of Physical Chemistry. 1994/05/01 1994;98(21):5552-5556.
16. Franco G, Peter LM, Ponomarev EA. Detection of inhomogeneous dye distribution in dye sensitised nanocrystalline solar cells by intensity modulated photocurrent spectroscopy (IMPS). Electrochemistry Communications. 1999;1(2):61-64.
17. Li J, Peat R, Peter L. Surface recombination at semiconductor electrodes: Part II. Photoinduced “near-surface” recombination centres in p-GaP. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1984;165(1):41-59.
18. Peter L, Li J, Peat R. Surface recombination at semiconductor electrodes: Part I. Transient and steady-state photocurrents. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1984;165(1):29-40.
19. Li J, Peter LM. Surface recombination at semiconductor electrodes: Part III. Steady-state and intensity modulated photocurrent response. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1985;193(1–2):27-47.
20. Li J, Peter LM. Surface recombination at semiconductor electrodes: Part iv. Steady-state and intensity modulated photocurrents at n-GaAs electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1986;199(1):1-26.
21. Peter LM, Li J, Peat R, Lewerenz H, Stumper J. Frequency response analysis of intensity modulated photocurrents at semiconductor electrodes. Electrochimica Acta. 1990;35(10):1657-1664.
22. Ponomarev EA, Peter LM. A comparison of intensity modulated photocurrent spectroscopy and photoelectrochemical impedance spectroscopy in a study of photoelectrochemical hydrogen evolution at p-InP. Journal of Electroanalytical Chemistry. 1995;397(1–2):45-52.
23. Lin Y, Zhang J, Yin F, Xiao X. Interfacial Charge Transfer Behaviors of Nanoparticulate CdSe Thin Film Electrodes. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-FRANKFURT AM MAIN THEN WIESBADEN THEN MUNCHEN-. 1999;213:1-8.
24. Songyuan LWHLHZD. Development and Application of Intensity Modulate Photocurrent Spectroscopy and Intensity Modulate Photovoltage Spectroscopy. Progress in Chemistry. 2009;21(6):1085.
25. Krüger J, Plass R, Grätzel M, Cameron PJ, Peter LM. Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells:  A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy. The Journal of Physical Chemistry B. 2003/08/01 2003;107(31):7536-7539.
26. Ponomarev EA, Peter LM. A generalized theory of intensity modulated photocurrent spectroscopy (IMPS). Journal of Electroanalytical Chemistry. 1995;396(1–2):219-226.
27. Chen Y, Huang G-F, Huang W-Q,, Wang L-L, Tian Y, Ma Z-L, Yang Z-M. Annealing effects on photocatalytic activity of ZnS films prepared by chemical bath deposition. Materials Letters. 2012;75(0):221-224.
28. Cheng K-W, Jhuang C-H, Yeh L-Y. Influence of gallium on the growth and photoelectrochemical performances of AgIn5S8 photoelectrodes. Thin Solid Films. 2012;524(0):238-244.
29. Lin L-H, Wu C-C, Lai C-H, Lee T-C. Controlled Deposition of Silver Indium Sulfide Ternary Semiconductor Thin Films by Chemical Bath Deposition. Chemistry of Materials. 2008/07/01 2008;20(13):4475-4483.
30. Chrysikopoulos CV, Kruger P. Chelated indium activable tracers for geothermal reservoirs, Stanford University; 1986.
31. Cheng K-W, Wang S-C. Effects of complex agents on the physical properties of Ag–In–S ternary semiconductor films using chemical bath deposition. Materials Chemistry and Physics. 2009;115(1):14-20.
32. Huang M-C, Wang T, Chang W-S, Wu C-C, Lin J-C, Yen T-H. Influence of dipping cycle on structural, optical and photoelectrochemical characteristics of single phase polycrystalline AgInS< sub> 2 thin films on ITO prepared by aqueous chemical reaction. Journal of Alloys and Compounds. 2014;606:189-195.
33. Bott AW. Electrochemistry of semiconductors. Current Separations. 1998;17:87-92.
34. Chang W-S, Wu C-C, Jeng M-S, Cheng K-W, Huang C-M, Lee T-C. Ternary Ag–In–S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications. Materials Chemistry and Physics. 2010;120(2–3):307-312.
35. Tseng C-J, Wang C-H, Cheng K-W. Photoelectrochemical performance of gallium-doped AgInS2 photoelectrodes prepared by electrodeposition process. Solar Energy Materials and Solar Cells. 2012;96(0):33-42.
36. 謝叢憶. IMPS/IMVS於半導體電極之分析與應用. 中正大學. 2011.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明