博碩士論文 101324049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.238.250.105
姓名 許怡君(Yi-Chun Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 藉由X射線光電子能譜分析銅表面微結構與銅表面可焊性之相關性研究
(Correlation study between Cu surface microstructure and solderability of Cu surface by X-Ray photoelectron spectroscopy)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究★ 含銅鎳之錫薄膜線之電致遷移研究
★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究★ 電遷移誘發銅墊層消耗動力學之研究
★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究★ 錫鎳覆晶接點之電遷移研究
★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響★ 覆晶凸塊封裝之兩界面反應交互作用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-6-30以後開放)
摘要(中) 於工業製程中對銅材進行滾壓機械加工,其加工表面會生成一表面滾壓層(surface rolling layer),已於先前之研究被定義出。此表面滾壓層之特性以及其厚度將影響銅材與焊料之間之濕潤性質,先前研究指出具有較厚之表面滾壓層會導致濕潤性之下降,進而降低焊接可靠度。因此,將針對此表面滾壓層做更深入之探討並藉由氧化還原處理以改善銅材之表面可焊性。於第四章中,我們先針對影響銅材與焊料的溼潤性質之可行性進行探討,首先,藉由可焊性測試(Soldering test)與低掠角X光繞射儀(Grazing Incident X-ray Diffraction),我們發現相對表面殘留應力(relative residual stress)與可焊性兩者之間存在對應的關係,而表面殘留應力則來自於表面破壞產生的固有缺陷(intrinsic defect)。同時,藉由光電子能譜儀(X-ray Photoelectron Spectroscopy)以及紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy)對氧化銅表面進行分析,探討固有缺陷對於光電子特性之影響,兩論點可以被建立出:(1)不同殘留應力對庫倫作用能之影響和(2)固有缺陷造成之自由電子濃度差異對功函數之影響。最後在第五章,再利用這些論點去建立氧化還原處理以改善銅材之表面可焊性之機制。
摘要(英) Cu always processed into mechanical cold work in technological industry. The surface rolling layer (SRL) would form on the Cu which is defined in previous research. The characteristics and thickness of SRL would affect the wetting performance between rolled-Cu and high-Pb solder. Previous research indicated that the thicker SRL would cause wetting performance decreasing, hence decreasing the reliability of solder joint. Therefore, in this work, we will discuss the physical properties of SRL in a detail and solderability improving by redox treatment. In Chapter 4, we further discuss about the factors affecting the solderability. First, we compare to GIXRD and solderability of Cu lead-frames, the relative residual stress of Cu was corresponded to solderability and indicated that the well solderability shows the relative low strained on Cu surface. The main factor for the residual stress is more likely to be intrinsic defects formed in the manufactured process.Then, we use XPS/UPS analysis of the CuxO surface to observe the photo-electronic properties affecting by the intrinsic defects. With knowing all the probably factors affecting the photo-electronic behaviors in the intrinsic defects, we can construct two versions for the intrinsic defects affecting photo-electronic behaviors. First one is the difference of Coulomb interaction energy observing in Cu 2p spectrum. The second one is the work function with various free electron concentration trapped by the defects. Afterwards, we combine these two versions into the mechanism. The mechanism of improving solderability by redox treatment was established.
關鍵字(中) ★ 光電子能譜儀
★ 殘留應力
★ 可焊性
★ 功函數
★ 缺陷
關鍵字(英) ★ XPS
★ Residual stress
★ Solderability
★ Work function
★ Defect
論文目次 Abstract (Chinese) I
Abstract (English) II
Table of contents III
List of figures V
List of tables VII
Chapter 1 Introduction VII
1.1 Background 1
1.2 Change of microstructure after cold work 3
1.3 Measurements of residual stress 7
1.4 Binding energy shift in XPS analysis 10
1.5 Correlation of relative binding energy shift and induced stress 12
Chapter 2 Motivation 14
Chapter 3 Experimental process and measurements 16
3.1 Cu and CuxO substrates preparation 16
3.2 Cross-sectional, surface, and bulk analysis 17
3.3 Soldering test 17
Chapter 4 Results and discussions 19
4.1 Soldering test on Cu lead-frames 19
4.2 GIXRD analysis in microstructure 21
4.2.1 Texture coefficient calculation 21
4.2.2 Residual stress calculation 23
4.3 Correlation of photo-electron feature and intrinsic residual stress of defects 26
4.3.1 Characteristic of Cu 2p in strained CuxO 26
4.3.2 Charge transfer mechanism of excited Cu (3d9) in strained CuO 29
4.3.3 Characteristic of Valence band XPS (VBXPS) in strained CuO 38
4.3.4 Work function by UPS analysis in strained CuO 41
4.4 Summary 47
Chapter 5 Mechanism of improving solderability by redox treatment 48
5.1 Grain morphology analysis 48
5.2 Mechanism of Cu-Sn bond in redox process 49
5.3 Summary 50
Chapter 6 Conclusion 54
Reference 55
參考文獻

[1] John H. Lau, Flip chip technologies, McGraw-Hill, New York, 1996.
[2] C. S. Huang, J. G. Duh, Y. M. Chen and J. H. Wang, J. Electron. Mater., 32, 89-94, 2003.
[3] M. O. Alam, Y. C. Chan, K. N. Tu and J. K. Kivilahti, Chem. Mater., 17, 2223-2226, 2005.
[4] D. R. Frear, J. W. Jang, J. K. Lin and C. Zhang, J. Mater., 53, 28-33, 2001.
[5] Y. H. Hsiao, Y. C. Chuang and C. Y. Liu, Scripta Materialia, 54, 661-664, 2006.
[6] S. W. Chen and C. H. Wang, J. mater. Res., 21, 2270-2277, 2006.
[7] S. Kim, J. H. Jang, J. S. Lee and D. J. Duquette, Electrochimica Acta, 52 5258–5265 (2007).
[8] P. Fricoteaux and J. Douglade, J. of Materials Science Letters, 21, 1485-1488 (2002).
[9] O. Liao, L. Q. Zhu, H. C. Liu and W. P. Li, International Journal of Minerals, Metallurgy and Materials, 17, 1 (2010).
[10] Y. H. Chen, W. C. Liu, Y. C. Lin, C. C. Chung, W. J. Zeng, W. J. Chu, T. Y. Chung, and C. Y. Liu, Journal of Electronic Materials, 45, 1, 191-196, 2016.
[11] 汪建民 主編, ”材料分析 Material Analysis”, 中國材料科學學會, 2013.
[12] K.L. Soderman and J.P. Giroud, Relationships between uniaxial and biaxial stresses and strains in geosynthetics, Geosynthetics internationals, 2, No. 2, 495-504, 1995.
[13] Society for Automotive Engineering, Residual Stress Measurement by X-Ray Diffraction, 2nd ed., 1971, SAE J748a.
[14] I.C. Noyan, J.B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, New York, 1987.
[15] C.-H. Ma, J.-H. Huang, and Haydn Chen, Thin Solid Films, 418, 73–78, 2002.
[16] G. Liu, T. P. St. Clair, and D. W. Goodman, J. Phys. Chem. B, 103, 8578 - 8582, 1999.
[17] M. A. van Veenendaal and G. A. Sawatzky, ”Competition between screening channels in core-level x-ray photoemission as a probe of changes in the ground-state properties of transition-metal compounds”, Physical Review B 74(8): 085118, 2006.
[18] M. A. van Veenendaal and G. A. Sawatzky, ”Nonlocal screening effects in 2p x-ray photoemission spectroscopy core-level line shapes of transition metal compounds”, Physical Review Letters 70(16): 2459-2462, 1993.
[19] Hennig, D., Ganduglia-Pirovano M. V. and Scheffler, M. Phys. ReV. B, 53, 10344, 1996.
[20] Bagus, P. S., Brundle, C. R., Pacchioni, G. and Parmigiani, F. Surf. Sci. Rep., 19, 265, 1993.
[21] Rodriguez, J. A. and Goodman, D. W. Acc. Chem. Res. 1995, 28, 477.
[22] M. Murugesan, H. Nohira, H. Kobayashi, T. Fukushima, T. Tanaka and M. Koyanagi, Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, 625-629, 2012.
[23] K. Hirose, H. Nohira, K. Azuma, and T. Hattori, Progress in Surface Science, 82, 3, 2007.
[24] Y. H. Hsiao, Study of solder wettability on Cu lead-frame, Department of Chemical and Materials Engineering National Central University, Ph. D Thesis, 2011.
[25] J. Y. Park, T. H. Kwon, S. W. Koh, and Y. C. Kang, Bull. Korean Chem. Soc., Vol. 32, No. 4 1331-1335, 2011.
[26] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Third Edition.
[27] Kunfeng Chen, Shuyan Song and Dongfeng Xue, CrystEngComm, 15, 144–151, 2013.
[28] X. Jiang, T. Herricks, and Y. Xia, Nano Lett., 2, 1333, 2002.
[29] C.J. Love, J.D. Smith, Y. Cui, and K.K. Varanasi, Nanoscale, 3, 4972, 2011.
[30] Xiangdong Liu and Hiroshi Nishikawa, Scripta Materialia, 120, 80-84, 2016.
[31] Stefan Hufner, Photoelectron Spectroscopy Principles and Applications, Third revised and enlarged edition.
[32] Li Chen, Mitsugi Hamasaki, Hirotaka Manaka, and Kozo Obara, Open Journal of Physical Chemistry, 4, 44-51, 2014.
[33] Okada, K., Changes in the Electronic State of the Copper Oxide and Cu 2p XPS by Doping, 2004.
[34] Pei-Hsing Huang and Chi-Ming Lu, The Scientific World Journal, Volume 2014, Article ID 863404.
[35] K.P. McKenna and A.L. Shluger, Microelectronic Engineering, 86, 1751–1755, 2009.
[36] K. Seki and H. Ishii, IEEE Trans. on Electron Devices, 44, 8, 1295-1301, 1997.
[37] Mark T. Greiner, Michael G. Helander, Wing-Man Tang, Zhi-BinWang, Jacky Qiu and Zheng-Hong Lu, Nature materials, 11, 76-81, 2012.
[38] Fei Long, Poya Yasaei, Raj Sanoj, Wentao Yao, Petr Král, Amin Salehi-Khojin, and Reza Shahbazian-Yassar, ACS Appl. Mater. Interfaces, 8, 18360−18366, 2016.
[39] Yuzheng Guo, John Robertson, Engineering Department, Cambridge University, Cambridge CB2 1PZ, UK.
[40] C. R. A. Catlow, A.E.R.E., Harwell, Oxon, J. S. Anderson, and F.R.S, Proc. R. Soc. Lond. A., 353, 533-561, 1977.
[41] Mark T. Greiner, Lily Chai, Michael G. Helander, Wing-Man Tang, and Zheng-Hong Lu, Adv. Funct. Mater., 22, 4557–4568, 2012.
[42] Dong-Jin Yun, Sang-Hoon Lim, Seung-Hwan Cho, Bo-Sung Kim, and Shi-Woo Rhee, Journal of The Electrochemical Society, 156, 8, H634-H639, 2009.
[43] Jae Y. Kim, Jose´ A. Rodriguez, Jonathan C. Hanson, Anatoly I. Frenkel, and Peter L. Lee, J. AM. CHEM. SOC., 125, 10684-10692, 2003.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2017-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明