博碩士論文 101324050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:34.225.194.144
姓名 吳佳穎(Chia-ying Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化鎢/二氧化鈦之合成及其抗腐蝕 與光催化之應用
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究之目的在於發展於紫外光照射下有高效率光催化活性之光觸媒,並可以利用於抗腐蝕效果上,本研究運用了有機染料-亞甲基藍進行光降解反應,另外,將發展之液相光觸媒塗佈於不鏽鋼基材上,以便於測試其保護內層基材之抗腐蝕效果。利用摻雜過渡金屬化合物-三氧化鎢改質二氧化鈦,企圖將照光之後生成之光生電子由二氧化鈦之導帶傳導至三氧化鎢之導帶上儲存,並可在黑暗中持續有抗腐蝕的效果,另外,如果運用於光降解有機污染物反應上,則是利用三氧化鎢低能階與導帶位置較二氧化鈦低之特性,抑制電子電洞對的重組反應,增加其電荷分離的效率,以達成高光催化活性的目標。本研究係利用溶膠-凝膠法合成以三氧化鎢改質之液相二氧化鈦光觸媒,以浸鍍法的方式塗佈於基材上後,液相光觸媒可以回收再重複利用,大幅降低重新製作光觸媒的成本。本研究將不同製備條件(不同氧化鎢前驅物與添加不同氧化鎢之比例)製備出之光觸媒以不同鑑定方式鑑定其狀態,主要以單晶X光繞射儀、超高真空場發射掃描式電子顯微鏡、穿透式電子顯微鏡、高解析掃描穿透式電子顯微鏡與光電子能譜儀進行鑑定與分析。以循環伏安法進行抗腐蝕效果之分析,其循環可變電位範圍設定在-0.8 V 至0.6 V之間,電解液使用5 wt% 氯化鈉水溶液,並以20 瓦波長為254 nm的紫外光燈管為光源進行降解10 ppm亞甲基藍水溶液之光催化反應測試,而光降解反應之取樣樣品濃度可以藉由紫外可見光光譜儀進行分析。由單晶X光繞射儀分析圖顯示合成之光觸媒,其二氧化鈦奈米顆粒皆為銳鈦礦結構,由於添加之氧化鎢比例極少,故繞射圖中並未顯示出任何氧化鎢的繞射峰。由掃描式電子顯微鏡可知塗佈於玻璃基材上之光觸媒薄膜非常均一,其塗佈六次之薄膜厚度為348.84 nm左右。由穿透式電子顯微鏡之選區繞射圖可再次驗證二氧化鈦結構為銳鈦礦,而由高解析穿透式電子顯微鏡之晶格圖可知二氧化鈦之晶格間距為0.395 nm,其也符合銳鈦礦於(101)平面時之晶格間距。由穿透式電子顯微鏡亦可知二氧化鈦與以鎢改質之二氧化鈦奈米粒子之長短軸尺寸分別為30-77 nm和15-31 nm與33-53 nm和7-12 nm,摻雜氧化鎢粒子之後,其短軸尺寸明顯降低。由光電子能譜儀則可知二氧化鈦之鈦離子有兩種價態Ti3+和Ti4+,而氧化鎢之鎢離子也有兩種價態W5+和W6+,其分別為捕捉電洞之價態,另一則為抓取電子之價態,兩者的比例會影響電子電洞對重組的速率。在光催化活性之分析上,將塗佈有光觸媒薄膜之430型不鏽鋼基材浸入於5 wt% 硫酸水溶液中進行抗腐蝕效果之測試,結果顯示HT (1) 有較佳抗腐蝕效果,將相同塗佈條件之基材進行循環伏安法分析,亦可得相同結果,添加氧化鎢與二氧化鈦重量比為1比100之改質光觸媒有較低的電荷密度與電荷量,代表抗腐蝕效果較好。光反應活性以10 ppm亞甲基藍水溶液進行分析時,發現則是NT (4)與HT (4)之光催化活性較好。兩種氧化鎢前驅物之光催化活性則是以NT為最好,NT是利用鎢酸納為反應前驅物。本研究揭示了以氧化鎢改質二氧化鈦之光觸媒會受其添加氧化鎢比例多寡而影響光催化活性。
摘要(英) The purpose of this study was focused on preparing a photocatalyst with high photoactivity under UV light illumination and could be utilized on corrosion protection. This study used organic dye such as methylene blue to carry out photocatalytic reaction. Moreover, we coated as-prepared liquid photocatalyst onto stainless steel so as to analyze the anticorrosion effect about protecting interior metal substrate. Due to using WO3 to modify TiO2, the photoinduced electrons could be transferred from the conduction band of TiO2 to the conduction band of WO3 and stored on the storage system- WO3. Thus, it could be applied to dark condition and still had great effect of anticorrosion. If applied to the photocatalysis of degrading methylene blue, it could be take the advantage of lower band gap and lower conduction band of WO3 to inhibit the recombination of electron-hole pairs and enhance the separation rate of electron-hole pairs to increase the photoactivity. The literature used sol-gel method to synthesize W-modified TiO2 in liquid phase and then utilize dip-coating to coat as-prepared sol onto substrate. Because of liquid photocatalyst could be reused again and again, the cost of preparing photocatalyst could be decreased significantly. Moreover, the structure of different photocatalyst on different preparing conditions could be analyzed by XRD, SEM, TEM, HRTEM and XPS. The cycle potential range of cyclic voltammetry to analyze anticorrosion effect was set from -0.8 V to 0.6 V. The electrolyte used 5 wt% NaCl(aq). The photocatalytic reaction was carried out with methylene blue destruction by 20 W UVC light illumination and the concentration of every sample could be analyzed with UV-visible spectrophotometer. From the figures of XRD, the as-prepared TiO2 nanoparticles were all in anatase phase. Then, there were no peaks corresponding to WO3 due to the low amount of WO3. From SEM images, the as-prepared thin film of photocatalyst was very uniform and the thickness of thin film was around 348.84 nm. As shown in the SAED from TEM and the lattice space from HRTEM, both could be verified that the TiO2 nanoparticles were all anatase. Seen by the figures of TEM and HRTEM, the major and minor axis of pure TiO2 and W-modified TiO2 nanoparticles were 30-77 nm, 15-31 nm, 33-53 nm and 7-12 nm, respectively. It could be indicated that doping WO3 into TiO2 could decrease the minor axis obviously. From the data of XPS next, the chemical states of Ti and W were Ti3+, Ti4+, W5+ and W6+. Ti3+ and W5+ could gather holes; however, Ti4+ and W6+ could trap photoinduced electrons. The amount of these chemical states affected the recombination of electron-hole pairs. In the analysis of photoactivity, placing coated stainless steel substrates with photocatalyst thin film into 5 wt% sulfuric solution could be tested the anticorrosion effect. The results demonstrated that HT (1) exhibited great effect of corrosion protection. If using the same coated substrates to do cyclic voltammetry analysis, the results also indicated the same result, that is, the sample with the weight ratio of TiO2:WO3 = 100 : 1 could have lowest current density and the amount of charge. It could be showed the best effect of anticorrosion. The other photocatalysis with destruction organic dye illustrated NT (4) and HT (4) performed the best photoactivity on degrading methylene blue solution. Among the two different W precursors, NT, which was used Na2WO4 as precursor, exhibited the best photoacivity no matter in anticorrosion or in degradation. This study revealed W-modified TiO2 could be influenced by the amount of adding W and different W precursors.
關鍵字(中) ★ 二氧化鈦
★ 液相光觸媒
★ 三氧化鎢
★ 溶膠凝膠法
★ 抗腐蝕
★ 亞甲基藍降解
關鍵字(英) ★ Titania
★ liquid photocatalyst
★ Tungsten oxide
★ sol-gel method
★ anticorrosion
★ the degradation of methylene blue
論文目次 中文摘要 i
Abstract iii
Acknowledgements v
Table of contents vi
List of tables viii
List of figures ix
Chapter 1 Introduction 1
Chapter 2 Literature review 4
2.1 Heterogeneous TiO2 photocatalysis 4
2.1.1 Properties of TiO2 5
2.1.2 Reaction mechanisms of TiO2 photocatalyst 9
2.2 TiO2 nanoparticle by liquid phase synthesis method 10
2.2.1 Sol-gel method 11
2.2.2 Hydrothermal method 13
2.2.3 Co-precipitation 13
2.2.4 Microemulsion method 14
2.2.5 Preparation of W precursors 15
2.3 Modified TiO2 19
2.3.1 Principle of metal doping and influence on photocatalytic reaction 21
2.3.2 Cation doping 23
2.3.3 Anion doping 25
2.3.4 Coupled/composite TiO2. 27
2.4 Preparation methods of TiO2 and W-modified TiO2 thin film 29
2.5 Application of photocatalyst 31
2.6 The effect of anticorrosion 33
2.6.1 The definition and mechanism of corrosion 34
2.6.2 Analysis of the effect of anticorrosion 36
2.6.3 Previous method of anticorrosion 41
2.7 Photoactivity test by methylene blue destruction 42
Chapter 3 Experimental 45
3.1 Materials 45
3.2 Preparation methods 45
3.2.1 Synthesis of TiO2 sol 45
3.2.2 Synthesis of W precursor 46
3.2.3 Preparation of W-modified TiO2 sols 47
3.2.4 Preparation of TiO2 and W-modified TiO2 films 48
3.3 Characterization 50
3.3.1 X-Ray Diffraction (XRD) 50
3.3.2 Scanning Electron Microscopy (SEM) 52
3.3.3 Transmission Electron Microscopy (TEM) and High-resolution Electron Microscopy (HRTEM) 53
3.3.4 X-Ray Photoelectron Spectroscopy (XPS) 54
3.3.5 UV-visible spectrophotometer 55
3.4 Photocatalytic test 56
3.5 Analysis of the effect of anticorrosion 59
3.5.1 The state of corrosion 59
3.5.2 Four-point Probe 60
3.5.3 Cyclic voltammeter 62
Chapter 4 Photocatalytic catalysis on TiO2 and W-Modified TiO2 66
4.1 Results and discussion 66
4.1.1 Characteristics of TiO2 and W-modified TiO2 sols 66
4.1.2 XRD 68
4.1.3 SEM 71
4.1.4 TEM and HRTEM 74
4.1.5 XPS 80
4.1.6 Analysis of the effect of anticorrosion- The state of corrosion 88
4.1.7 Analysis of the effect of anticorrosion- Four- point probe 91
4.1.8 Analysis of the effect of anticorrosion- Cyclic voltammeter 92
4.1.9 Photocatalytic destruction of Methylene blue aqueous solution 95
Chapter 5 Conclusions 100
References 102
參考文獻 Alonso-Falleiros, Neusa and Stephan Wolynec, (1998). “Effect of niobium on corrosion resistance to sulfuric acid of 430 ferritic stainless steel.” Materials Research, 1(1), 39-45.

Bathe, S. R. and P. S. Patil, (2014). “Electrochemical behavior of TiO2 nanoparticle doped WO3 thin film.” J. Mater., 2014, 1-5.

Bavykin, D. V.; V. P. Dubovitskaya, A. V. Vorontsov and V. N. Parmon, (2007). “Effect of TiOSO4 hydrothermal hydrolysis conditions on TiO2 morphology and gas-phase oxidative activity.” Res. Chen. Intermed., 33(3-5), 449-464.

Chaudhari, G. N.; A. M. Bende, A. B. Bodade, S. S. Patil and V. S. Sapkal, (2006). “Structural and gas sensing properties of nanocrystalline TiO2:WO3-based hydrogen sensors.” Sens. Actuators, B, 115, 297-302.

Chaudhuri, Rajib Ghosh and Santanu Paria, (2014). “Visible light induced photocatalytic activity of sulfur doped hollow TiO2 nanoparticles, synthesized via a novel route.” Dalton Trans., 43, 5526-5534.

Chen, S.; L. Chen, S. Gao and G. Cao, (2005). “The preparation of coupled WO3/TiO2 photocatalyst by ball milling.” Powder Technology, 160, 198-202.

Choi, Wonyong; Andreas Termin and Michael R. Hoffmann, (1994). “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics.” J. Phys. Chem., 98, 13669-13679.

Daghrir, R.; P. Drougi and D. Robert, (2013). “Modified TiO2 for environmental photocatalytic applications: A Review.” Ind. Chem. Res., 52, 3581-3599.

Diebold, Ulrike, (2003). “The surface science of titanium dioxide.” Surface Science Reports, 48, 4853-229.

Djaoued, Y.; S. Balaji and N. Beaudoin, (2013). “Sol-gel synthesis of mesoporous WO3-TiO2 composite thin films for photochromic devices.” J. Sol-Gel Sci. Technol., 65, 374-383.

Frey, K.; V. Iablokov, G. Melaet, L. Guczi and N. Kruse, (2008). “CO oxidation activity of Ag/TiO2 catalysts prepared via oxalate co-precipitation.” Catal. Lett., 124, 74-79.

Ge, Lei; M. Xu, M. Su and H. Fang, (2006). “Low-temperature synthesis of photocatalytic TiO2 thin film from aqueous anatase precursor sols.” J. Sol-Gel Techn., 38, 47-53.

Gratzel, Michael and Russell F. Howe. “Electron paramagnetic resonance studies of doped TiO2 colloids.” J. Phys. Chem., 94, 2566-2572.


Guo, C.; S. Yin, Q. Dong and T. Sato, (2012). “The near infrared absorption properties of W18O49.” RSC Adv., 2, 5041-5043.

Hong, S.S. ; M. S. Lee, H. S. Hwang, K. T. Lim, S. S. Park, C. S. Ju and G. D. Lee, (2003). “Preparation of titanium dioxides in the W/C microemulsions and their photocatalytic activity.” Sol. Energy Mater. Sol. Cells, 80, 273-282.

Hsu, C. S.; C. K. Lin, C. C. Chan, C. C. Chang and C. Y. Tsay, (2006). “Preparation and characterization of nanocrystalline porous TiO2/WO3 composite thin film.” Thin Solid Films, 494, 228-233.

Ibhadon, A. O. and P. Fitzpatrick, (2013). “Heterogeneous photocatalysis: recent advances and applications.” Catalysts, 3, 189-218.

Ismail, M.; L. Bousselmi and O. Zahraa, (2011). “Photocatalytic behavior of WO3-loaded TiO2 systems in the oxidation of salicylic acid.” J. Photochem. Photobiol., A, 222, 314-322.

Kim, M. S.; W. J. Jo, D. Lee, S. H. Baeck, J. H. Shin and B. C. Lee, (2013). “Enhanced photocatalytic activity of TiO2 modified by e-beam irradiation.” Bull. Korean Chem. Soc., 34(5), 1397-1400.

Labuz, P.; R. Sadowski, G. Stochel and W. Macyk, (2013). “Visible light photoactive titanium dioxide aqueous colloids and coatings.” Chem. Eng. J., 230, 188-194.


Lee, Byung-Yong; Sang-Hyuk Park, Misook Kang1,Sung-Chul Lee and Suk-Jin Choung, (2003). “Preparation of Al/TiO2 nanometer photo-catalyst film and the effect of H2O addition on photo-catalytic performance for benzene removal.” Applied Catalysis A: General, 253, 371–380.

Li, S.; Qian Wang, Tao Chen, Zhihua Zhou, Ying Wang and Jiajun Fu, (2012). “Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel.” Nanoscale Res. Lett., 7, 227-235.

Li, X. Z.; F. B. Li, C. L. Yang and W. K. Ge, (2001). “Photocatalytic activity of WOx-TiO2 under visible light irradiation.” J. Photochem. Photobiol., A, 141, 209-217.

Liao, J.; Liyi Shi S. Yuan, Yin Zhao and J. Fang, (2009). “Solvothermal synthesis of TiO2 nanocrystal colloids from peroxotitanate complex solution and their photocatalytic activities.” J. Phys. Chem. C, 113, 18778-18783.

Liu, B.; X. Wang, G. Gai, L. Wen, Y. Song and X. Zhao, (2009). “Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies.” J. Hazard. Mater., 169, 1112-1118.

Liu, Chao; X. Tang, C. Mo and Z. Qiang, (2008). “Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium.” J. Solid State Chem., 181, 913-919.



Liu, G. Q.; Z. G. Jin, X. X. Liu, T. Wang and Z. F. Liu, (2007). “Anatase TiO2 porous thin films prepared by sol-gel method using CTAB surfactant.” J. Sol-Gel Techn., 41, 49-55.

Lukáč, J.; M. Klementová, Petr Bezdička, S. Bakardjieva, Jan Šubrt, L. Szatmáry and Anna Grusková, (2007). “Characterization of Zr-doped TiO2 prepared by homogeneous co-precipitation without high-temperature treatment.” J. Mater. Sci., 42, 9421-9428.

Macwan, D. P.; P. N. Dave and S. Chaturvedi, (2011). “A review on nano-TiO2 sol-gel type syntheses and its applications.” J. Mater. Sci., 46, 3669-3686.

Mei, Chang Song and Shun He Zhong, (2005). “Effects of loaded metal on structure and photocatalytic performance of photocatalyst for synthesis of MAA from propylene with carbon dioxide.” Acta Chimica Sinica, 63(19), 1789-1794.

Mills, Andrew and Stephen Le Hunte, (1997). “An overview of semiconductor photocatalysis.” J. Photochem. Photobiol. A-Chem., 108, 1-35.

Mital, G. S.; T. Manoj, (2011). “A review of TiO2 nanoparticles.” Phy. Chem., 56(16), 1639-1657.

Mo, Shang-Di and W. Y. Ching, (1995). “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite.” Physical review B, 51(19), 13 023-13 032.


Ochiai, T. and A. Fujishima, (2012). “Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification.” J. Photochem. Photobiol. C: Photochem. Rev., 13, 247-262.

Oliveira, J. P.; C. T. laia and L. C. Branco, (2012). “Optimization of ionic liquid film deposition by spin and dip coating techniques.” J. Mater. Sci. Eng. B, 2(8), 437-441.

Pan, Jia Hong and Wan In Lee, (2006). “Preparation of highly ordered cubic mesoporous WO3/TiO2 Films and their photocatalytic properties.” Chem. Mater. 18, 847-853.

Paola, A. Di; M. Bellardita, L. Palmisano, R. Amadelli and L. Samiolo, (2013). “Preparation and photoactivity of nanocrystalline TiO2 powders obtained by thermohydrolysis of TiOSO4.” Catal. Lett., 143, 844-852.

Patil, P. S.; S. H. Mujawar, A. I. Inamdar and S. B. Sadale, (2005). “Electrochromic properties of spray deposited TiO2-doped WO3 thin films.” Appl. Surf. Sci., 250, 117-123.

Peng, Feng; L. Cai, Lei Huang, Hao Yu and H. Wang, (2008). “Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method.” J. Phys. Chem. Solids, 69, 1657-1664.

Puddu, V.; R. Mokaya and G. Li Puma, (2007). “Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity.” Chem. Commun., 4749-4751.
Qian, Shasha; Changsong Wang, Weijia Liu, Yinhua Zhu, Wenjun Yao and Xiaohua Lu, (2011). “An enhanced CdS/TiO2 photocatalyst with high stability and activity: Effect
of mesoporous substrate and bifunctional linking molecule.” J. Mater. Chem., 21, 4945-4952.

Ren, G.; Yuan Gao, J. Yin, An Xing and H. Liu, (2011). “Synthesis of high-activity TiO2/WO3 photocatalysis via environmentally friendly and microwave assisted hydrothermal process.” J. Chem. Soc. Pak., 33(5), 666-670.

Riyas, S.; V. A. Yasir and PN Mohandas, (2002). “Crystal structure transformation of TiO2 in presence of Fe2O3 and NiO in air atmosphere.” Bull. Mater. Sci., 25(4), 267–273.

Ryu, Hyun-Wook and Kyung-Hee Park, (2003). “Synthesis and characterization of WO3 nanopowders and their electrical properties.” J. Korean Phys. Soc., 42(6), 727-730.

Sasirekha, N.; B. Rajesh and Yu-Wen Chen, (2009). “Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent.” Thin Solid Films, 518, 43-48.

Shang, Jing; Wenqing Yao, Yongfa Zhua and Nianzu Wu, (2004). “Structure and photocatalytic performances of glass/SnO2/TiO2 interface composite film.” Applied Catalysis A: General, 257, 25–32.


Su, Dan; J. Wang, Y. Tang, Cheng Liu, Lifei Liu and X. Han, (2011). “Constructing WO3/TiO2 composite structure towards sufficient use of solar energy.” Chem. Comm., 47, 4231-4233.

Su, Mu; Ning Xu, Y. W. Cao, J. N. Yao and E. G. Wang, (2000). “Nanocrystalline tungsten oxide thin film: preparation, microstructure, and photochromic behavior.” J. Mater. Res., 15(4), 927-933.

Tan, Z.; K. Sato, S. Takami, Chiya Numako et al., (2013). “Particle size for photocatalytic activity of anatase TiO2 nanosheets with highly exposed {001} facets.” RSC Advance, 3, 19268-19271.

Tatsuma, Tetsu; S. Saitoh, Y. Ohko and A. Fujishima, (2001). “TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability.” Chem. Mater., 13, 2838-2842.

Tian, G.; H. Fu, L. Jing, B. Xin and Kai Pan, (2008). “Preparation and characterization of stable biphase TiO2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity.” J. Phys. Chem. C, 112, 3083-3089.

Tong, Hai-Xia; Qi-Yuan Chen, Zhou-lan Yin, Hui-ping Hu, Dao-Xin Wu and Ya-Hui Yang, (2009). “Preparation, characterization and photo-catalytic behavior of WO3-TiO2 catalysts with oxygen vacancies.” Trans. Nonferrous Met. Soc. China, 19, 1483-1488.

Tryba, Beata; Michał Piszcz and A. W. Morawski, (2009). “Photocatalytic activity of TiO2-WO3 composites.” International Journal of Photoenergy, 2009, 1-7.
Wang, Changhua; Changlu Shao, Xintong Zhang and Yichun Liu, (2009). “SnO2 Nanostructures-TiO2 Nanofibers Heterostructures: Controlled Fabrication and High Photocatalytic Properties.” Inorg. Chem., 48, 7261–7268.

Wang, Shih-Han; Tse-Chuan Chou and Chung-Chiun Liu, (2003). “Nano-crystalline tungsten oxide NO2 sensor.” Sens. Actuators, B, 94, 343-351.

Wang, Yude, Ting Chen and Qiuying Mu, (2011). “Electrochemical performance of W-doped anatase TiO2 nanoparticles as an electrode material for lithium-ion batteries.”
J. Mater. Chem., 21, 6006–6013.

Wu, Yu Qi; Gong Xuan Lu and Shu Ben Li, (2004). “Study of preparation and photocatalytic activity of nanosized WO3 powder.” Acta Chimica Sinica, 62(12), 1134-1138.

Xu, N.; Z. Shi, Y. Fan, J. Dong, Jun Shi and M. Z. C. Hu, (1999) “Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions.” Ind. Eng. Chem. Res., 38, 373-379

Yao, Jun and Chaoxia Wang, (2010). “Decolorization of methylene blue with TiO2 sol via UV irradiation photocatalytic degradation.” International Journal of Photoenergy, 2010, 1-6.

Zaleska, A., (2008). “Doped-TiO2: A Review.” Recent Patents on Engineering, 2, 157-164.

Zhao, Bin and Yu-Wen Chen, (2011). “Ag/TiO2 sol prepared by a sol–gel method and its photocatalytic activity.” J. Phys. Chem. Solids, 72, 1312–1318.

Zhu, Ying; X. Su, Chao Yang, X. Gao, Feng Xiao and Jide Wang, (2012). “Synthesis of TiO2-WO3 nanocomposites as highly sensitive benzene sensors and high efficiency adsorbents.” J. Mater. Chem., 22, 13914-13917.

李芳柏、古國榜、李新軍、萬洪富 (2000, 11)。。物理化學學報,16(11),頁997-1002。

靳映霞、王慶輝、張瑾、朱忠其、柳清菊 (2004, 04)。<納米WO3的製備及性能研究>。功能材料,35,頁1222-1224。

陳崧哲、張彭義、祝萬鵬、劉福東 (2004, 07)。<可見光響應光催化劑研究進展>。化學進展,16(4),頁613-619。

欒勇、傅平豐、戴學剛、杜竹瑋 (2004, 09)。<金屬離子摻雜對TiO2光催化性能的影響>。化學進展,16(5),頁738-746。

Liz-Marzán, Luis M. and Prashant V. Kamat. (2003): Nanoscale Materials. New York, Boston, Dordrecht, London, Moscow, Kluwer Academic Publishiers.

劉富雄編譯 (1999)。《防蝕技術》。臺北市:全華。

鮮祺振編譯 (1998)。《腐蝕控制》。新北市:財團法人徐氏基金會。

熊楚強、王月主編 (2004)。《電化學》。新北市:新文京開發出版股份有限公司。

橋本 和仁、藤嶋 昭監修,謝文權編譯 (2006) 《圖解光觸媒》。臺北市:全華。
指導教授 陳郁文(Yu-wen Chen) 審核日期 2014-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明