博碩士論文 101324054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.133.156.156
姓名 吳采羚(Tsai-Ling Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
(Synthesis and Characterization of SnS2 Anode Material for Li ion battery)
相關論文
★ 鉬系材料應用於鎂電池正極之性質研究★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究
★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究
★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質
★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗中藉由水熱法以及溶劑熱法,改變反應溶劑製備出具有不同表面形貌之SnS2粉體,由乙二醇以及水所製備出的粉體均為奈米結構組成的聚集體,而使用乙醇所製備出的粉體是由厚度約60-70 nm的奈米盤所組成之3D層狀微米結構。相較於前面兩種粉末(乙二醇以及水) ,此種微米結構能有效舒緩鋰離子嵌入-嵌出過程中,所產生的巨大體積膨脹。於300 mA/g (0.47 C) 的定電流下,反覆充放電100圈後,仍可提供414 mAh/g的可逆電容量,其維持率約為76 %。
  使用乙醇做為反應溶劑,當反應溫度降至100 oC時,可有效的減少3D層狀結構之奈米盤的厚度,其厚度約為20-40 nm;不僅可以緩和鋰離子嵌入過程中所造成的體積膨脹且可降低內阻,改善在高速下的電化學性能;於300 mA/g (0.47 C) 的定電流下,反覆充放電100圈後,仍可提供460 mAh/g的可逆電容量,其維持率高達84 %以及在5000 mA/g (7.75 C) 的快充速度下,可提供285 mAh/g之可逆電容量。因此擁有3D層狀結構以及有效減少奈米盤的厚度,可有效提升SnS2之電化學性能。
摘要(英) As energy storage devices, lithium-ion batteries are extremely important power sources for various portable electronic devices and electric vehicles in modern society. Tin sulfide (SnS2) is low-cost, low toxicity, and high capacities (theoretical capacity:645 mAh/g), it has become one of the most promising anode materials to replace the already commercialized graphite (theoretical capacity:372 mAh/g) in the next generation of lithium ion batteries, and has attracted intensive research interest. Unfortunately, the main drawback of this system stems from the poor conductivity and a drastic pulverization problem due to the large volume change during the lithiation/delithiation process, leading to a high level of irreversibility (i.e, low columbic efficiency) and poor cycle life.
  In this study, the different surface morphology of SnS2 powders is prepared by a simple hydrothermal and solvothermal route with different solvents. The powders which use ethylene glycol and DI water as solvent are nanostructures composed of aggregates. However, the powder which uses ethanol as solvent shows many 3D flowerlike microspheres with diameter of 1-2 μm that are composed of hundreds of nanosheets with thicknesses of 60¬-70 nm. Compared to previous two powders, the 3D flowerlike microspheres with hundreds of nanosheets can alleviate the volume change during the lithiation/delithiation process. At a constant current of 300 mA/g (0.47 C) , the 3D flowerlike microspheres exhibit reversible capacity of 414 mAh/g after 100 cycles with the retention of 76 %.
  The powder which uses ethanol as solvent synthesized at 100 oC, can effectively reduce thickness of nanosheets with 20-40 nm. It not only can alleviate the volume change during the lithiation/delithiation process but also reduce the internal resistance, improving the electrochemical performance at high C-rate. At a constant current of 300 mA/g (0.47 C) , it exhibits reversible capacity of 460 mAh/g after 100 cycles with the retention of 84 %.And at a high constant current of 5000 mA/g (7.75 C) , it can provide the reversible capacity of 285 mAh/g. Therefore, both of the 3D flowerlike microspheres structure and a decrease of thickness can improve the electrochemical performance.
關鍵字(中) ★ 硫化錫
★ 鋰離子電池
★ 水熱法
★ 溶劑熱法
關鍵字(英) ★ Tin Sulfide
★ lithium-ion batteries
★ hydrothermal
★ solvothermal
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧 4
2-1 鋰離子二次電池的發展 4
2-2 鋰離子二次電池組成以及工作原理 5
2-2-1 鋰離子二次電池的工作原理 5
2-2-2 鋰離子二次電池之正極材料 9
2-2-3 鋰離子二次電池之電解液 12
2-2-4 鋰離子二次電池之隔離膜 12
2-2-5 鋰離子二次電池之負極材料 13
2-3 鋰離子二次電池負極材料SnS2之性質及發展近況 22
2-4 鋰離子二次電池負極材料SnS2之合成方法 34
2-4-1 水熱法與溶劑熱法之簡介 34
2-4-2 水熱及溶劑熱法之合成原理 34
2-4-3 水熱法以及溶劑熱法製備粉體的優點 36
第三章 實驗方法與步驟 37
3-1 實驗藥品與器材 37
3-1-1 實驗藥品 37
3-1-2 實驗器材與儀器 38
3-2 實驗步驟 40
3-2-1 以不同溶劑製備SnS2之鋰電池負極材料 40
3-2-2 於不同溫度下製備SnS2之鋰電池負極材料 43
3-3 材料鑑定分析 45
3-3-1 X光粉末繞射儀(X-ray Diffraction, XRD) 45
3-3-2 場發射式電子掃描顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 45
3-3-3 能量散佈光譜儀(Energy Dispersive Spectrum, EDS) 45
3-3-4 比表面積與微孔洞分析儀 45
3-3-5 傅立葉轉換紅外線光譜分析(Fourier-Transform Infrared Spectrometer, FTIR) 46
3-3-6 拉曼光譜儀(Raman Spectrometer) 46
3-4 材料電化學分析 48
3-4-1 電極的製備與電池的組裝 48
3-4-2 循環伏安法分析 50
3-4-3 計時電位法 50
3-4-4 交流阻抗分析 50
第四章 結果與討論 51
4-1 以不同溶劑製備SnS2之鋰電池負極材料 51
4-1-1 以不同溶劑製備SnS2粉末之結構分析 51
4-1-2 以不同溶劑製備SnS2粉末之表面形貌及劑量比分析 52
4-1-3 以不同溶劑製備SnS2粉末之比表面積分析 54
4-1-4 以不同溶劑製備SnS2粉末之拉曼光譜分析 61
4-1-5 以不同溶劑製備SnS2粉末之傅立葉紅外光譜分析 63
4-1-6 以不同溶劑製備SnS2粉末之循環伏安法測試 65
4-1-7 以不同溶劑製備SnS2粉末之電化學性能測試 70
4-1-8 以不同溶劑製備SnS2粉末之交流阻抗分析 80
4-2 以乙醇作為反應溶劑製備SnS2之鋰電池負極材料 82
4-2-1 以乙醇作為反應溶劑製備SnS2粉末之結構分析 82
4-2-2 以乙醇作為反應溶劑在不同溫度下製備SnS2粉末之表面形貌及劑量比分析 82
4-2-3 以乙醇作為反應溶劑在不同溫度下製備SnS2粉末之比表面積分析 89
4-2-4 以乙醇作為反應溶劑在不同溫度下製備SnS2粉末之拉曼光譜分析 90
4-2-5 以乙醇作為反應溶劑在不同溫度下製備SnS2粉末之傅立葉紅外光譜分析 90
4-2-6 以乙醇作為反應溶劑在不同溫度下製備SnS2粉末之循環伏安法測試 93
4-2-7 以乙醇作為反應溶劑在不同溫度下製備SnS2粉末之電化學性能測試 93
4-2-8 以乙醇作為反應溶劑在不同溫度下製備SnS2粉末之交流阻抗分析 102
第五章 結論 104
參考文獻 106
附錄 116
參考文獻 1. J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
2. C.M. Park, J.H. Kim, H. Kim, and H.J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews, 2010. 39(8): p. 3115-3141.
3. M.S. Whittingham, Electrical Energy Storage and Intercalation Chemistry. Science, 1976. 192(4244): p. 1126-1127.
4. B.J. Landi, M.J. Ganter, C.D. Cress, R.A. Dileo, and R.P. Raffaelle, Carbon nanotubes for lithium ion batteries. Energy & Environmental Science, 2009. 2(6): p. 638-654.
5. B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010. 195(9): p. 2419-2430.
6. L.X. Yuan, Z.H. Wang, W.X. Zhang, X.L. Hu, J.T. Chen, Y.H. Huang, and J.B. Goodenough, Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy & Environmental Science, 2011. 4(2): p. 269-284.
7. J.B. Goodenough and Y. Kim, Challenges for Rechargeable Li Batteries. Chemistry of Materials, 2010. 22(3): p. 587-603.
8. A. Manthiram, Materials Challenges and Opportunities of Lithium Ion Batteries. The Journal of Physical Chemistry Letters, 2011. 2(3): p. 176-184.
9. J.B. Goodenough, Rechargeable batteries: challenges old and new. Journal of Solid State Electrochemistry, 2012. 16(6): p. 2019-2029.
10. M.M. Thackeray Lithium-ion batteries: An unexpected conductor. Nature Materials, 2002. 1(2).
11. F.F.C. Bazito and R.M. Torresi, Cathodes for lithium ion batteries: the benefits of using nanostructured materials. Journal of the Brazilian Chemical Society, 2006. 17: p. 627-642.
12. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, LixCoO2 (0 13. J. Cho, Y.J. Kim, and B. Park, Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell. Chemistry of Materials, 2000. 12(12): p. 3788-3791.
14. A.M. Kannan, L. Rabenberg, and A. Manthiram, High Capacity Surface-Modified LiCoO2 Cathodes for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2003. 6(1): p. A16-A18.
15. M.M. Thackeray, W.I.F. David, P.G. Bruce, and J.B. Goodenough, Lithium insertion into manganese spinels. Materials Research Bulletin, 1983. 18(4): p. 461-472.
16. C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze, and H.Q. Wu, Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta, 2006. 51(19): p. 3872-3883.
17. A. Yamada, S.C. Chung, and K. Hinokuma Optimized LiFePO4 for Lithium Battery Cathodes. Journal of The Electrochemical Society, 2001. 148(3): p. A224-A229.
18. J.W. Fergus, Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195(4): p. 939-954.
19. 鄭程鴻, 楊家諭, 邱永城, 鋰離子二次電池電解質介紹. 工業材料, 1996. 110: p. 66-72.
20. 龔丹誠, 李治宏, 微孔隙隔離膜及其市場現況介紹. 工業材料, 2013. 324: p. 77-85.
21. M.V. Reddy, G.V. Subba Rao, and B.V.R. Chowdari, Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical Reviews, 2013. 113(7): p. 5364-5457.
22. M.R. Palacin, Recent advances in rechargeable battery materials: a chemist′s perspective. Chemical Society Reviews, 2009. 38(9): p. 2565-2575.
23. K. Zaghib, G. Nadeau, and K. Kinoshita, Effect of Graphite Particle Size on Irreversible Capacity Loss. Journal of The Electrochemical Society, 2000. 147(6): p. 2110-2115.
24. J. Yao, G.X. Wang, J.H. Ahn, H.K. Liu, and S.X. Dou, Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells. Journal of Power Sources, 2003. 114(2): p. 292-297.
25. I. Mochida, C.H. Ku, S.H. Yoon, and Y. Korai, Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries. Journal of Power Sources, 1998. 75(2): p. 214-222.
26. S.S. Zhang, K. Xu, and T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta, 2006. 51(8–9): p. 1636-1640.
27. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243-3262.
28. J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005. 147(1–2): p. 269-281.
29. H. Nakamura, H. Komatsu, and M. Yoshio, Suppression of electrochemical decomposition of propylene carbonate at a graphite anode in lithium-ion cells. Journal of Power Sources, 1996. 62(2): p. 219-222.
30. S.B. Lee and S.I. Pyun, Mechanism of lithium transport through an MCMB heat-treated at 800–1200 °C. Electrochimica Acta, 2002. 48(4): p. 419-430.
31. D.J.F. Ali Reza Kamali, TIN-BASED MATERIALS AS ADVANCED ANODE MATERIALS FOR LITHIUM ION BATTERIES: A REVIEW. Rev.Adv.Mater.Sci., 2011. 27: p. 14-24.
32. W.J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): p. 13-24.
33. Y. Gu, F. Wu, and Y. Wang, Confined Volume Change in Sn–Co–C Ternary Tube-in-Tube Composites for High-Capacity and Long-Life Lithium Storage. Advanced Functional Materials, 2013. 23(7): p. 893-899.
34. S.I. Lee, S. Yoon, C.M. Park, J.M. Lee, H. Kim, D. Im, S.G. Doo, and H.J. Sohn, Reaction mechanism and electrochemical characterization of a Sn–Co–C composite anode for Li-ion batteries. Electrochimica Acta, 2008. 54(2): p. 364-369.
35. J. Cabana, L. Monconduit, D. Larcher, and M.R. Palacín, Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials, 2010. 22(35): p. E170-E192.
36. P.G. Bruce, B. Scrosati, and J.M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 2008. 47(16): p. 2930-2946.
37. M.G. Kim and J. Cho, Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries. Advanced Functional Materials, 2009. 19(10): p. 1497-1514.
38. C. Xu, Y. Zeng, X. Rui, N. Xiao, J. Zhu, W. Zhang, J. Chen, W. Liu, H. Tan, H.H. Hng, and Q. Yan, Controlled Soft-Template Synthesis of Ultrathin C@FeS Nanosheets with High-Li-Storage Performance. ACS Nano, 2012. 6(6): p. 4713-4721.
39. H.S. Kim, Y.H. Chung, S.H. Kang, and Y.E. Sung, Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries. Electrochimica Acta, 2009. 54(13): p. 3606-3610.
40. J. Ma, D. Lei, L. Mei, X. Duan, Q. Li, T. Wang, and W. Zheng, Plate-like SnS2 nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties. CrystEngComm, 2012. 14(3): p. 832-836.
41. J. Yin, H. Cao, Z. Zhou, J. Zhang, and M. Qu, SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. Journal of Materials Chemistry, 2012. 22(45): p. 23963-23970.
42. L. Zhuo, Y. Wu, L. Wang, Y. Yu, X. Zhang, and F. Zhao, One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries. RSC Advances, 2012. 2(12): p. 5084-5087.
43. L. Ji, H.L. Xin, T.R. Kuykendall, S.L. Wu, H. Zheng, M. Rao, E.J. Cairns, V. Battaglia, and Y. Zhang, SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage. Physical Chemistry Chemical Physics, 2012. 14(19): p. 6981-6986.
44. M. Sathish, S. Mitani, T. Tomai, and I. Honma, Ultrathin SnS2 Nanoparticles on Graphene Nanosheets: Synthesis, Characterization, and Li-Ion Storage Applications. The Journal of Physical Chemistry C, 2012. 116(23): p. 12475-12481.
45. B. Luo, Y. Fang, B. Wang, J. Zhou, H. Song, and L. Zhi, Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy & Environmental Science, 2012. 5(1): p. 5226-5230.
46. K. Chang, Z. Wang, G. Huang, H. Li, W. Chen, and J.Y. Lee, Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. Journal of Power Sources, 2012. 201(0): p. 259-266.
47. L. Mei, C. Xu, T. Yang, J. Ma, L. Chen, Q. Li, and T. Wang, Superior electrochemical performance of ultrasmall SnS2 nanocrystals decorated on flexible RGO in lithium-ion batteries. Journal of Materials Chemistry A, 2013. 1(30): p. 8658-8664.
48. S. Liu, X. Lu, J. Xie, G. Cao, T. Zhu, and X. Zhao, Preferential c-Axis Orientation of Ultrathin SnS2 Nanoplates on Graphene as High-Performance Anode for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2013. 5(5): p. 1588-1595.
49. H. Sun, M. Ahmad, J. Luo, Y. Shi, W. Shen, and J. Zhu, SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries. Materials Research Bulletin, 2014. 49(0): p. 319-324.
50. Q. Wang, Y. Huang, J. Miao, Y. Zhao, and Y. Wang, Synthesis and electrochemical characterizations of Ce doped SnS2 anode materials for rechargeable lithium ion batteries. Electrochimica Acta, 2013. 93(0): p. 120-130.
51. M. Zhang, D. Lei, X. Yu, L. Chen, Q. Li, Y. Wang, T. Wang, and G. Cao, Graphene oxide oxidizes stannous ions to synthesize tin sulfide-graphene nanocomposites with small crystal size for high performance lithium ion batteries. Journal of Materials Chemistry, 2012. 22(43): p. 23091-23097.
52. Z. Jiang, C. Wang, G. Du, Y.J. Zhong, and J.Z. Jiang, In situ synthesis of SnS2@graphene nanocomposites for rechargeable lithium batteries. Journal of Materials Chemistry, 2012. 22(19): p. 9494-9496.
53. M. Sathish, S. Mitani, T. Tomai, A. Unemoto, and I. Honma, Nanocrystalline tin compounds/graphene nanocomposite electrodes as anode for lithium-ion battery. Journal of Solid State Electrochemistry, 2012. 16(5): p. 1767-1774.
54. C. Shen, L. Ma, M. Zheng, B. Zhao, D. Qiu, L. Pan, J. Cao, and Y. Shi, Synthesis and electrochemical properties of graphene-SnS2 nanocomposites for lithium-ion batteries. Journal of Solid State Electrochemistry, 2012. 16(5): p. 1999-2004.
55. C. Zhai, N. Du, H. Zhang, J. Yu, and D. Yang, Multiwalled Carbon Nanotubes Anchored with SnS2 Nanosheets as High-Performance Anode Materials of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2011. 3(10): p. 4067-4074.
56. J.G. Kang, G.H. Lee, K.S. Park, S.O. Kim, S. Lee, D.W. Kim, and J.G. Park, Three-dimensional hierarchical self-supported multi-walled carbon nanotubes/tin(iv) disulfide nanosheets heterostructure electrodes for high power Li ion batteries. Journal of Materials Chemistry, 2012. 22(18): p. 9330-9337.
57. Y. Du, Z. Yin, X. Rui, Z. Zeng, X.J. Wu, J. Liu, Y. Zhu, J. Zhu, X. Huang, Q. Yan, and H. Zhang, A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries. Nanoscale, 2013. 5(4): p. 1456-1459.
58. M. He, L.X. Yuan, and Y.H. Huang, Acetylene black incorporated three-dimensional porous SnS2 nanoflowers with high performance for lithium storage. RSC Advances, 2013. 3(10): p. 3374-3383.
59. J. Li, P. Wu, F. Lou, P. Zhang, Y. Tang, Y. Zhou, and T. Lu, Mesoporous carbon anchored with SnS2 nanosheets as an advanced anode for lithium-ion batteries. Electrochimica Acta, 2013. 111(0): p. 862-868.
60. C. Zhai, N. Du, and H.Z.D. Yang, Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage. Chemical Communications, 2011. 47(4): p. 1270-1272.
61. J. Zai, X. Qian, K. Wang, C. Yu, L. Tao, Y. Xiao, and J. Chen, 3D-hierarchical SnS2 micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances. CrystEngComm, 2012. 14(4): p. 1364-1375.
62. J. Wang, J. Liu, H. Xu, S. Ji, J. Wang, Y. Zhou, P. Hodgson, and Y. Li, Gram-scale and template-free synthesis of ultralong tin disulfide nanobelts and their lithium ion storage performances. Journal of Materials Chemistry A, 2013. 1(4): p. 1117-1122.
63. T.J. Kim, C. Kim, D. Son, M. Choi, and B. Park, Novel SnS2-nanosheet anodes for lithium-ion batteries. Journal of Power Sources, 2007. 167(2): p. 529-535.
64. J.W. Seo, J.T. Jang, S.W. Park, C. Kim, B. Park, and J. Cheon, Two-Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries. Advanced Materials, 2008. 20(22): p. 4269-4273.
65. S. Liu, X. Yin, L. Chen, Q. Li, and T. Wang, Synthesis of self-assembled 3D flowerlike SnS2 nanostructures with enhanced lithium ion storage property. Solid State Sciences, 2010. 12(5): p. 712-718.
66. K. Chang, W.X. Chen, H. Li, and H. Li, Microwave-assisted synthesis of SnS2/SnO2 composites by l-cysteine and their electrochemical performances when used as anode materials of Li-ion batteries. Electrochimica Acta, 2011. 56(7): p. 2856-2861.
67. D. Lei, M. Zhang, B. Qu, J. Ma, Q. Li, L. Chen, B. Lu, and T. Wang, Hierarchical tin-based microspheres: Solvothermal synthesis, chemical conversion, mechanism and application in lithium ion batteries. Electrochimica Acta, 2013. 106(0): p. 386-391.
68. Y. Zou and Y. Wang, Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries. Chemical Engineering Journal, 2013. 229(0): p. 183-189.
69. Q. Wu, L. Jiao, J. Du, J. Yang, L. Guo, Y. Liu, Y. Wang, and H. Yuan, One-pot synthesis of three-dimensional SnS2 hierarchitectures as anode material for lithium-ion batteries. Journal of Power Sources, 2013. 239(0): p. 89-93.
70. L. Wang, L. Zhuo, Y. Yu, and F. Zhao, High-rate performance of SnS2 nanoplates without carbon-coating as anode material for lithium ion batteries. Electrochimica Acta, 2013. 112(0): p. 439-447.
71. 馬振基, 奈米材料科技原理與應用. 全華科技圖書股份有限公司, 2004: p. 4.31-4.36.
72. 戴明鳳, 羅吉宗, 林鴻明,鄭振宗,蘇程裕,吳育民, 奈米科技導論. 全華圖書股份有限公司, 2008: p. 3.48-3.50.
73. G. Zhu, P. Liu, J. Zhou, X. Bian, X. Wang, J. Li, and B. Chen, Effect of mixed solvent on the morphologies of nanostructured Bi2S3 prepared by solvothermal synthesis. Materials Letters, 2008. 62(15): p. 2335-2338.
74. S. Brunauer, L.S. Deming, W.E. Deming, and E. Teller, On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 1940. 62(7): p. 1723-1732.
75. X. Yin, Q. Zhao, B. Shao, W. Lv, Y. Li, and H. You, Synthesis and luminescent properties of uniform monodisperse YBO3:Eu3+/Tb3+ microspheres. CrystEngComm, 2014. 16(25): p. 5543-5550.
76. C.F. Li, W.H. Ho, C.S. Jiang, C.C. Lai, M.J. Wang, and S.K. Yen, Electrolytic Sn/Li2O coatings for thin-film lithium ion battery anodes. Journal of Power Sources, 2011. 196(2): p. 768-775.
指導教授 李岱洲、張仍奎(Tai-Chou Lee Jeng-Kuei Chang) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明