博碩士論文 101324063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.233.220.21
姓名 莊柏中(Bo-zhong Zhuang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 三步驟法製備具可加工性之聚醯胺酸共聚亞胺
(Preparation of Soluble Poly(amic acid-co-imide) by Three-Step Method)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以三步驟的方式製備聚醯胺酸共聚亞胺(poly(amic acid-co-imide), PA-I),可分別合成出聚醯胺酸(polyamic acid, PAA)、低環化程度聚醯胺酸共聚亞胺(PA-IL)與高環化程度聚醯胺酸共聚亞胺(PA-IH)。而且第二步驟所合成之PA-IL在極性溶劑中具有可溶性,再以120 oC熱處理提高環化程度後,PA-IH則具有耐溶劑性及其他優異性質,以解決一般聚醯亞胺(polyimide, PI)使用高反應性的單體時,所遇到的加工性困境。
第一步驟是以4,4′-二胺基二苯醚(4,4’-Oxydianiline, ODA)和均苯四甲酸二酐(Pyromellitic dianhydride, PMDA)合成出PAA,結果顯示增加PMDA的劑量可提高PAA的分子量。
第二步驟以亞硫醯氯(SOCl2)進行化學環化,得到PA-IL。探討PAA分子量、反應溫度、SOCl2對環化程度(imidization degree, ID)的影響。ID是以紅外線光譜進行檢測。結果顯示PAA分子量並不會對ID有所影響,反應溫度70oC下所得到可溶性PA-IL,較易維持其可溶性,且在SOCl2添加量為80 %時,ID可達到49 %,並在N-甲基?咯酮(1-methyl-2-pyrrolidinone, NMP)下仍為可溶狀態,具備加工性。
第三步驟進行120 oC熱環化,得到PA-IH。探討PA-IL分子量、反應溫度與SOCl2下所得PA-IL對ID的影響。結果顯示不同分子量、不同反應溫度與SOCl2下所得PA-IL經熱處理後皆可提高ID,提升其耐溶劑性。當PA-IL在反應溫度70 oC下以及SOCl2添加量大於60 %時,可得到ID達到69 %且耐NMP溶劑之PA-IH。
熱重分析結果(TGA),發現PA-IL和PA-IH皆有兩階段重量損失,第一階段(200~220 oC)為熱環化所造成;第二階段(640~650 oC)為熱裂解的溫度,此溫度與PI相同。而進行微差掃描熱分析(DSC)可知PA-I的玻璃轉移溫度(Tg)為270~300 oC。
機械性質測試顯示PA-IH的最大抗張強度隨ID上升而增加,最高可至41.7 MPa,並從伸長量(7~12 %)與楊氏模數(0.3~0.7 GPa)顯示出PA-IH的薄膜具有堅硬不易變形的特性。
摘要(英) Preparation of poly(amic acid-co-imide) has been developed by three-step method. Poly(amic acid) (PAA), poly(amic acid-co-imide) with low imidization degree (PA-IL) and poly(amic acid-co-imide) with high imidization degree (PA-IH) were obtained in each step. In addition, soluble PA-IL was easily prepared at the second step. Then insoluble PA-IH with high imidization degree (ID) was prepared by heat treatment at 120 oC.
4,4’-Oxydianiline (ODA) and pyromellitic dianhydride (PMDA) were polymerized to become PAA in first step and the molecular weight of PAA was able to controlled by the amount of PMDA.
PA-IL was prepared by chemical imidization of PAA with SOCl2 in second step. Effects of molecular weight of PAA, temperature and SOCl2 on ID were discussed. IDs of polymers were measured from FT-IR. It was found that molecular weight of PAA didn’t effect ID. PA-IL prepared at 70 oC was easily controlled to keep soluble. On the other hand, ID of PA-IL was reached to 49% by adding 80% SOCl2 at 70 oC and the PA-IL was still soluble in 1-methyl-2-pyrrolidinone (NMP) at the same time.
PA-IH was prepared by heat treatment of PA-IL at 120oC in third step. Effects of molecular weight of PA-IL, temperature and SOCl2 on ID were discussed. The ID of PA-IL with differential molecular weight, temperature and SOCl2 was increased by heat treatment and PA-IH had solvent resistance. ID of PA-IH prepared from soluble PA-IL (70 oC, SOCl2≧60%) was reached to 69% and PA-IH kept shape in NMP.
Thermal gravimetric analyzer (TGA) of PA-IL and PA-IH both showed two stages of mass loss. The first stage (200~220 oC) was result from thermal imidization of the polymers. The second stage (640~650 oC) was decomposition temperature of the polymers and the decomposition temperature was the same as PI. Differential scanning calorimeter (DSC) showed glass transition temperature (Tg) of PA-IH was at 270~300 oC.
Ultimate tensile strength (UTS) of PA-IH increased with ID and reached to 41.7 MPa. Elongation at break(7~12 %) and Young’s modulus(0.3~0.7 GPa) showed that PA-IH film was tough and robust.
關鍵字(中) ★ 聚醯胺酸共聚亞胺
★ 聚醯亞胺
★ 化學環化
★ 熱環化
★ 化學程度
★ 熱性質
關鍵字(英) ★ poly(amic acid -co- imide)
★ polyimides
★ chemical imidization
★ thermal imidization
★ imidization degree
★ thermal properties
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xi
第 一 章 緒論 1
1-1 聚醯亞胺的發展和應用 1
1-2 熱環化 2
1-3 化學環化 3
1-4 環化程度的控制 4
1-5 三步驟法 6
1-6 研究動機與目的 7
第 二 章 實驗 8
2-1 實驗藥品 8
2-2 實驗儀器 10
2-3 實驗方法 11
2-3-1 單體精製 11
2-3-2 溶劑除水 11
2-3-3三步驟法合成聚醯胺酸共聚亞胺(PA-I) 11
2-4儀器分析 14
2-4-1 傅立葉轉換紅外線光譜儀(FT-IR)測試條件 14
2-4-2 微差掃描熱分析儀(DSC) 14
2-4-3 熱重損失分析儀(TGA) 14
2-4-5 核磁共振儀(NMR) 15
2-4-6萬能材料試驗機(Universal testing machine) 15
第 三 章 結果與討論 16
3-1 PAA之合成 17
3-2低ID值的PA-I, PA-IL之合成 20
3-2-1熱環化與ID 20
3-2-2 不同分子量PAA之化學環化 26
3-2-3 不同溫度對化學環化的影響 30
3-2-4 SOCl2劑量對化學環化與可溶性的探討 37
3-2-5 PAA和PA-IL之核磁共振分析 42
3-3高ID值的PA-I, PA-IH之合成 45
3-3-1 不同分子量的PA-IL之熱環化 45
3-3-2 不同溫度製備的PA-IL之熱環化 49
3-3-3 不同SOCl2劑量製備的PA-IL之熱環化 56
3-3-4 PAA與PA-IL(80%)之比較 60
3-4 PA-I之熱性質 64
3-4-1熱穩定性分析及環化程度之研究 64
3-4-2玻璃轉移溫度與環化程度之探討 75
3-5 PA-IH之機械性質 81
3-6 PA-IH之耐溶劑性質 87
第 四 章 結論 89
參考文獻 91
參考文獻 1. T. M. Bogert and R. R. Renshaw, 4-amino-o-phthalic acid and some of its derivatives. Journal of the American Chemical Society, 30, 1140, (1908)
2. W. N. Edwards, U. S. Patent 3, 179, 614(1965)
3. A. E. Endry, U. S. Patent 3,179, 630(1965)
4. C. P. Yang, S. H. Hsiao, Effects of various factors on the formation of
high molecular weight polyamic acid. Journal of Applied Polymer Science 1985, 30,2883-2905
5. Y. J. Tong et al., Bulk viscosity and its unstable behavior upon storage in polyimide precursor solutions. Industrial & Engineering Chemistry Research, 2002, 41, 4266-4272
6. S. Mehdipour-Ataei and N. Bahri-Laleh, Synthesis and properties of polyimides and copolyimides containing pyridine units: A review. Iranian Polymer Journal, 2008, 17(2), 95-124.
7. C. J. Chen, et al., Resistive switching non-volatile and volatile memory behavior of aromatic polyimides with various electron-withdrawing moieties. Journal of Materials Chemistry, 2012, 22(28), 14085-14093.
8. K. L. Wang, et al., High glass transition and thermal stability of new pyridine-containing polyimides: Effect of protonation on fluorescence. Polymer, 2008, 49(6), 1538-1546.
9. L. M. Fortes, M. C. Goncalves, and R. M. Almeida, Flexible photonic crystals for strain sensing. Optical Materials, 2011, 33(3), 408-412.
10. J. Q. Qin, et al., Double phase separation in preparing polyimide/silica hybrid films by sol–gel method. Polymer, 2007, 48(12), 3379-3383.
11. J. Q. Qin, L. Zhen, and G. Yi, Study on morphology control and how to affect mechanical properties of polyimide/silica hybrid films. Journal of Applied Polymer Science, 2010, 118(5), 2772-2777.
12. H. Z. Zhou, et al., Preparation of porous polyimide films by selective decomposition of poly(methyl methacrylate) from PI/PMMA-blended films. High Performance Polymers, 2012, 25(1), 33-41.
13. I. H. Tseng, et al., Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Materials Chemistry and Physics, 2012, 136(1), 247-253.
14. D. Likhatchev, et al., Soluble aromatic polyimides based on 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane: Synthesis and properties. Journal of Applied Polymer Science, 1996, 59(4), 725-735.
15. Y. H. Zheng, et al., Synthesis and Properties of a High-Molecular-Weight Poly(amic acid) and Polyimide Based on 2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane. Journal of Applied Polymer Science, 2011, 121(2), 702-706.
16. D. M. Munoz, et al., An Improved Method for Preparing Very High Molecular Weight Polyimides. Macromolecules, 2009. 42(15), 5892-5894.
17. K. C. O′Brien, W. J. Koros, G. R. Husk, Influence of casting and curing conditions on gas sorption and transport in polyimide films. Polymer Engineering & Science, 1987, 27(3), 211-217.
18. R. A. Meyers, The polymerization of pyromellitic dianhydride with diphenylmethane diisocyanate. Journal of Polymer Science Part A-1: Polymer Chemistry, 1969, 7(10), 2757-2762.
19. G. D. Khune, Prepartion and properties of polyimide from diisocyanates. J Macromal Sci Chem 1980, 14, 687-711.
20. F. Yu, et al., Preparation and properties of rigid polyimide foams derived from dianhydride and isocyanate. Journal of Applied Polymer Science, 2013, 127(6), 5075-5081.
21. Li, Y., et al., Effects of 3,4′-oxydianiline on the structures and properties of a novel aromatic polyimide foam. Journal of Applied Polymer Science, 2012. 125(5): p. 4128-4134.
22. G. Deng, et al., Simulation of Dry-Spinning Process of Polyimide Fibers. Journal of Applied Polymer Science, 2009, 113(5), 3059-3067.
23. J. A. Young, J. A. Hinkley, and B. L. Farmer, Molecular simulations of the imidization of adsorbed polyamic acid. Macromolecules, 2000, 33(13), 4936-4944.
24. D. D. Cai, et al., Synthesis, characterization and hydrolytic stability of poly (amic acid) ammonium salt. Polymer Degradation and Stability, 2011, 96(12), 2174-2188.
25. Mohammed H. Kailani, Chong Sook Paik Sung, and Samuel J. Huang, Syntheses and Characterization of Model Imide Compounds and Chemical Imidization Study. Macromolecules, 1992, 25, 3751-3757.
26. S. H. Hsiao, C. P. Yang, and S. C. Huang, Preparation and properties of new polyimides and polyamides based on 1,4-bis(4-amino-2-trifluoromethylphenoxy) naphthalene. Journal of Polymer Science Part a-Polymer Chemistry, 2004, 42(10), 2377-2394.
27. M. M. Koton, T. K. Meleshko, Investigation Of The Kinetics Of Chemical Imidization. Polymer Science U.S.S.R., 1982, 24, 791-800.
28. M. Marek, et al., Imidization of Polypyromellitamic Acid bsed on 4,4′-Methylenedianiline. Makromolekulare Chemie-Macromolecular Chemistry and Physics, 1990, 191(11), 2631-2637.
29. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A. Laius, Polyimides: Thermally Stable Polymers, Plenum Press, New York. 1987.
30. C. D. Dimitrakopoulos, E. S. Machlin, and S. P. Kowalczyk, A kinetic study of the mechanism of the solid-state reaction between pyromellitic dianhydride (PMDA) and oxydianiline (ODA). Macromolecules, 1996, 29(18), 5818-5825.
31. K. Kimura, S. I. Kohama, and S. Yamazaki, Morphology Control of Aromatic Polymers in Concert with Polymerization. Polymer Journal, 2006, 38(10), 005-1022.
32. S. Tamai, A. Yamaguchi, and M. Ohta, Melt processible polyimides and their chemical structures. Polymer, 1996, 37(16), 3683-3692.
33. C. S. Wang and T. S. Leu, Synthesis and characterization of polyimides containing naphthalene pendant group and flexible ether linkages. Polymer, 2000, 41(10), 3581-3591.
34. G. Ragosta, et al., Effect of the chemical structure of aromatic polyimides on their thermal aging, relaxation behavior and mechanical properties. Journal of Materials Science, 2012, 47(6), 2637-2647.
35. H. H. Wang and S. P. Wu, Synthesis of thermally stable aromatic poly(imide amide benzimidazole) copolymers. Journal of Applied Polymer Science, 2003, 90(5), 1435-1444.
36. H. H. Wang, and S. P. Wu, Thermal and thermo-oxidative degradation properties of poly(benzimidazole amide imide) copolymers. Journal of Applied Polymer Science, 2004, 93(5), 2072-2081.
37. H. H. Wang and S. P. Wu, Synthesis and Their Thermal and Thermo-Oxidative Properties of Poly(benzimidazole amide imide) Copolymers. Journal of Polymer Research, 2005, 12(1), 37-47.
38. Y. Tsuda, et al., Soluble copolyimides based on 2,3,5-tricarboxycyclopentyl acetic dianhydride and conventional aromatic tetracarboxylic dianhydrides. Polymer Journal, 1998, 30(3), 222-228.
39. A. S. Mathews, I. Kim, and C. S. Ha, Synthesis and characterization of novel fully aliphatic polyimidosiloxanes based on alicyclic or adamantyl diamines. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(18), 5254-5270.
40. S. V. Kumar, et al., Structure–property relationships for partially aliphatic polyimides. Journal of Polymer Research, 2010, 18(5), 1111-1117.
41. C. E. Sroog, Polyimides. Journal of Polymer Science: Macromolecular Reviews, 1976, 11(1), 161-208.
42. P. E. Nielsen, et al., Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 1991, 254(5037), 1497-1500.
43. H. R. Dennis, et al., Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer, 2001, 42(23), 9513-9522.
44. T. D. Fornes, et al., Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer, 2001, 42(25), 9929-9940.
45. K. S. Ho and L. W. Chen, Kinetic studies of polyamide-imide synthesis. Journal of Polymer Science Part a-Polymer Chemistry, 1997, 35(9), 1703-1710.
46. Y. Zhai, et al., Phase Separation of Poly(Amic Acid-Co-Imide) Solution. Chemical Engineering Communications, 2009, 197(3), 289-304.
47. Y. Wang, et al., Effect of chemical structure and preparation process on the aggregation structure and properties of polyimide film. Journal of Applied Polymer Science, 2013, 127(6), 4581-4587.
48. Y. Xu, et al., Polyimide fibers prepared by dry-spinning process: imidization degree and mechanical properties. Journal of Materials Science, 2013, 48(22), 7863-7868.
49. Y. Zhai, et al., The study on imidization degree of polyamic acid in solution and ordering degree of its polyimide film. Journal of Materials Science, 2008, 43(1), 338-344.
50. A. Jonquieres, A. Vicherat, and P. Lochon, Synthesis and characterization of new polyamideimides with a highly flexible soft block. Journal of Polymer Science Part a-Polymer Chemistry, 1999, 37(15), 2873-2889.
51. C. P. Yang and C. S. Wei, Synthesis and characterization of two polytrimellitamideimide series with different segment order by direct polycondensation. Journal of Applied Polymer Science, 2001, 82(6), 1556-1567.

指導教授 陳暉(Hui Chen) 審核日期 2014-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明