博碩士論文 101324067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:131 、訪客IP:54.91.41.87
姓名 廖聖揚(Sheng-Yang Liou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究
★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究大致可以分為兩大部分,第一部分為單晶矽基板上製備碗狀凹槽結構,並討論其結構在光學抗反射上的效能。第二部分為利用濺鍍沉積之 ZnO:Al 透明導電薄膜當晶種層,成功以水熱法沉積製備 ZnO 以及 AZO 奈米線陣列,並利用 SEM、TEM、SAED、XRD、UV-Vis和EDS針對其表面形貌、成長動力學、光學特性、光暗電流、親疏水等性質作一系列研究分析。
藉由噴砂機在單晶矽表面進行噴砂,再以濕式蝕刻的方式蝕刻出碗狀結構,並定義為四個階段。藉由表面輪廓以可測得其表面粗糙度,最佳階段具有最粗糙的粗糙度,而過了最佳階段之後因碗狀結構越來越平而導致粗糙度下降。透過紫外光-可見光光譜儀量測可測得其具有非常低的反射率。
藉由TEM 和 XRD 分析可以得知本實驗水熱法製備之ZnO 和 AZO 奈米線為六方晶系纖鋅礦的單晶結構,且在本實驗之反應溫度65-80 0C內,奈米線長度和反應時間呈線性關係。藉由計算不同反應溫度下的反應速率,ZnO、AZO (2%Al) 、AZO (5%Al)和AZO(10% Al) 奈米線陣列的反應活化能可以藉由阿瑞尼士方程式推導分別為35.1(kJ/mol)、48.6 (kJ/mol)、55.6(kJ/mol)、59(kJ/mol)。濺鍍沉積AZO薄膜和AZO奈米線薄膜的電阻隨著照射UV光的時間增加而減少。此外本研究也對於ZnO材料的表面潤濕性質進行探討,且得知ZnO材料之水接觸角將會隨著放置時間的增加而變大。最後將製備完成之親水性 ZnO 與 AZO 奈米線薄膜施以真空以及氧氣氛下熱處理,可以達到調控材料表面潤濕性質之目的。
摘要(英) There are two parts in this study, the first part is bowl-liked surface synthesis on single crystalline Si. Large area vertically-aligned ZnO and Al-doped ZnO (AZO) nanowires were successfully synthesized by hydrothermal method on glass and Si substrates in the second part. The morphologies, crystal structures, compositions, properties, and growth kinetics of the ZnO and AZO nanowires have been systematically investigated by SEM, TEM, SAED, XRD, UV-vis and EDS analyses.
Single crystalline Si was sandblasted through sandblast machine, and bowl-liked surface was manufactured successfully through wet etching. From dektak analysis, the surface roughness become larger with increasing the time of etching. The roughness will become smaller when the bowls become too large. The low reflectance was also analysised through UV-Vis.
From TEM and XRD analysis, all the ZnO and AZO nanowires synthesized were single crystalline with a hexagonal structure and their growth direction was parallel to [0001]. In addition, the lengths of the ZnO and AZO nanowires were found to increase linearly with reaction time at 65-80 0C. By measuring the growth rate at different reaction temperatures, the activation energies for the linear growth of ZnO, AZO (2%Al), AZO (5%Al) and AZO(10%Al) nanowire arrays were derived to be about 35.1、48.6、55.6、59 kJ/mol, respectively. The resistances of AZO film and AZO nanowires were measured to decrease with the exposure time of UV light. On the other hand, an abnormal surface wettability were found in the ZnO-based samples. The water contact angles of the ZnO-based tended to increase with increasing the storage days. In this study, we also demonstrate the wettability of ZnO and AZO nanowires can be modulated by annealing in vacuum and in oxygen atmosphere.
關鍵字(中) ★ 碗狀結構
★ 水熱法
★ 奈米線
★ 成長動力學
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池 4
1-2-1 矽晶太陽能電池 4
1-3透明導電薄膜表面粗糙化 5
1-4矽晶基板表面粗糙化 6
1-5透明導電材料 7
1-6氧化鋅材料 8
1-7氧化鋅摻雜鋁奈米線製備方法 8
1-8水熱法沉積ZnO奈米線合成方法以及理論基礎 9
1-9研究動機與實驗目的 11
第二章 實驗步驟 13
2-1實驗試片前處理 13
2-2化學溶液蝕刻法製備金字塔結構實驗步驟 13
2-2-1化學溶液蝕刻法製備金字塔結構 13
2-3化學溶液蝕刻法製備碗狀結構實驗步驟 14
2-3-1以噴砂機製備表面粗糙化之矽晶基板 14
2-3-2 化學溶液蝕刻法製備碗狀凹槽結構 15
2-4水熱法實驗步驟 15
2-4-1 實驗試片前處理 16
2-4-2 濺鍍沉積法製備ZnO:Al透明導電薄膜特性分析 16
2-4-3水熱法製備ZnO ,AZO奈米結構薄膜之成長動力學分析 17
2-5水熱法沉積溶液配製 17
2-6 實驗設備 17
2-6-1 濺鍍系統(Sputtering System) 17
2-6-2 水熱法沉積系統(Hydrothermal System) 18
2-6-3 真空退火系統(Vacuum Annealing System) 18
2-7 實驗分析設備 19
2-7-1 掃描式電子顯微鏡(SEM) 19
2-7-2 紫外光-可見光光譜儀(UV-VIS) 19
2-7-3穿透式電子顯微鏡與能量散佈光譜儀 20
2-7-4 XRD 繞射分析 21
2-7-5 PL光激發光譜儀 21
2-7-6 電性分析儀 22
2-7-7影像式接觸角量測儀 22
第三章 結果與討論 23
3-1 金字塔結構、碗狀結構Si之製備 23
3-2金字塔結構、碗狀結構Si之特性分析 23
3-2-1 金字塔結構、碗狀結構Si之表面形貌與反射率 23
3-2-2 改變不同參數對於其表面形貌之影響 23
3-3 水熱法沉積製備 AZO奈米線之製備與分析 25
3-3-1 不同晶種層對於水熱法沉積製備AZO奈米線之影響 25
3-3-2 溫度與時間對於水熱法沉積製備AZO奈米線薄膜之影響 25
3-3-3 水熱法沉積製備AZO 奈米線之反射率 27
3-3-4 水熱法沉積製備AZO 奈米線之TEM鑑定與分析 29
3-3-5水熱法沉積製備AZO 奈米線之XRD鑑定與分析 30
3-3-6水熱法沉積製備AZO 奈米線之PL鑑定與分析 31
3-4 水熱法沉積製備AZO奈米線之成長動力學討論 33
3-5水滴接觸角之相關原理與量測 36
3-5-1 AZO奈米線之親疏水性質及其對於電性之影響 37
3-5-2水熱法沉積製備AZO 奈米線之光暗電性分析 39
第四章 結論 41
參考文獻 44
圖目錄 52
參考文獻 [1] 吳財福, 陳裕愷, 張健軒, “太陽光電能供電與照明系統綜論,” 全華圖書,
(2007) 1-2.
[2] German Advisory Council on Global Change WBGU Berlin 2003 www.wbgu.de;
Renewable Energy Policy Network for the 21st Century, Renewables, Global Status
Report 2006
[3] H. Tsubomura and H. Kobayashi, “Solar Cells,” Crit. Rev. Solid State Mater. Sci.
18 (1993) 261-326.
[4] A. A. Lacis and J. E. Hansen, “A Parameterization for the Absorption of Solar
Radiation in the Earth′s Atmosphere,” J. Astronaut.Sci., 31 (1974) 118-133.
[5] 陳頤承, 黃志仁, 吳建樹, 翁得期, 陳麒麟, “矽薄膜太陽能電池技術,” 電子
月刊, 145 (2007) 149-164.
[6] http://technews.tw/2014/04/29/more-solar-energy-in-germany/
[7] B. Lim, S. Hermann, K. Bothe, J. Schmidt, and R. Brendel, “Solar Cells on Low-
Resistivity Boron-Doped Czochralski-Grown Silicon with Stabilized Efficiencies
of 20%,” Appl. Phys. Letter. 93 (2008) 162102~3
[8] U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi,
“Comparative Study of Different Approaches of Multicrystalline Silicon Texturing
for Solar Cell Fabrication,” Solar Energy Materials and Solar cells 91 (2007)
285-289.
[9] A. Gordijn, J. K. Rath, and R. E. I. Schropp, “High-Efficiency μc-Si Solar Cells
Made by Very High-Frequency Plasma-Enhanced Chemical Vapor Deposition,”
Prog. Photovoltaics Res. Appl. 14 (2006) 305-311.

[10] Schultz, S. W. Glunz, G. A. Leimenstoll, H. Lautenschlager, and J. C.
Goldschmidt, in Proc. 19th Europ. Photovolt. Solar Energy Conf., in: W.
Hoffmann, H. A. Ossenbrink, P. Helm, H. Ehmann (Eds.), Stephens and
Accociates, Bedfore UK, in press.
[11] H. Keppner, J. Meier, P. Torres, D. Fischer, and A. Shah, “Microcrystalline
Silicon and Micromorph Tandem Solar Cells,” Appl. Phys. A 69 (1999) 169-177.
[12] B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-
sensitized colloidal TiO2 films,” Nature 353 (1991) 737-739.
[13] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J.
D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M.
Grätzel, “High-Efficiency Light-Harvesting Ruthenium Sensitizer for Thin Film
Dye-Senitized Solar Cells, ”Acs nano 3 (2009) 3103-3109.
[14] 邱秋燕、廖曰淳/工研院材化所, 郭豐綱/國立清華大學, “低成本銅銦鎵硒
(CIGS)太陽電池技術發展”
[15] V. M. Andreev, V. A. Grikhiles, and V. D. Rumyanzev, “Photoelectric conversion
of sun concentrated radiation,” Leningrand, Nauka, 1989.
[16] N. H. Karam, R. R. King, B. T. Cavicchi, D. D. Krut, J. H. Ermer, M. Haddad, L.
Cai, D. E. Joslin, M. Takahashi, J. W. Eldredge, W. T. Nishikawa, D. R.
Lillington, B. M. Keyes, and R. K. Ahrenkiel, “Development and
Characterization of High-Efficiency Ga0.5In0.5P/GaAs/Ge Dual- and Triple-
junction Solar cells,” IEEE Trans Elec. Devices 46 (1999) 2116-25.
[17] Phys. Status Solidi A 208, No. 1, 109–113 (2011) / DOI 10.1002/pssa.201026164
[18] H. Zhu, J. Hüpkes, E. Bunte, J. Owen, and S.M. Huang, “Novel etching method
on high rate ZnO:Al thin films reactively sputtered from dual tube metallic
targets for silicon-based solar cells,” Solar Energy Materials & Solar Cells 95
(2011) 964-8.
[19] W. L. Lu, K. C. Huang, C. H. Yeh, C. I. Hung, and M. P. Houng, “Investigation
of textured Al-doped ZnO thin films using chemical wet-etching methods.”
Materials Chemistry and Physics 127 (2011) 358-63.
[20] K. Ip, M. E. Overberg, K. W. Baik, R. G. Wilson, S. O. Kucheyev, J. S.
Williams, C. Jagadish, F. Ren, Y. W. Heo, D. P. Norton, J. M. Zavada, and S. J.
Pearton, “ICP Dry Etching of ZnO and Effects of Hydrogen,” Solid State
Electron. 47 (2003) 2289-2294.
[21] M.A. Green, J. Zhao, 1990, “24% efficiency silicon solar cells”, Appl. Phys,
vol. 57, pp. 602-604
[22] Wang Xiaona, Liu Aimin, Cao Yingli, Zhao Zengchao, Sang Yongchang 15
(Pysical and Opto-electronical School,Dalian University of Technology,
LiaoNing DaLian 116023)
[23] Xiao-She Hua, Yi-Jie Zhang, Hao-Wei Wang, “The effect of texture unit shape on
silicon surface on the absorption properties”, DOI: 10.1016/j.solmat.2009.09.011
[24] 丁嘉仁、許沁如、聶雅玉、張哲瑋(2006)。次波長結構抗反射膜片發展
現況。機械工業雜誌,282, 72。
[25] Yun-Ju Lee,* Douglas S. Ruby, David W. Peters, Bonnie B. McKenzie, and Julia
W. P. Hsu, “ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells”,
NANO LETTERS 2008 Vol. 8, No. 5 1501-1505
[26] J.W. Leem, D.H. Joo, J.S. Yun, “Biomimetic parabola-shaped AZO
subwavelength grating structures for efficient antireflection of Si-based solar
cells”, Solar Energy Materials & Solar Cells 95 (2011) 2221–2227
[27] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354 (1991) 56-8.

[28] A. Lecestre, E. Dubois, A. Villaret, T. Skotnicki, P. Coronel, G. Patriarche, C.
Maurice, “Confined VLS growth and structural characterization of silicon
nanoribbons,” Microelectron. Eng. 87 (2010) 1522-1526.
[29] Zhao Wu, Yunwang Zhang, and Kai Du, “A simple and efficient combined AC–
DC Electrodeposition method for fabrication of highly ordered Au nanowires in
AAO template,” Appl. Surf. Sci. 265 (2013) 149-156.
[30] J. Elias, I. Utke, S. Yoon, M. Bechelany, A. Weidenkaff, J.Michler, and L.
Philippe, “Electrochemical growth of ZnO nanowires on atomic layer deposition
coated polystyrene sphere templates,” Electrochimica. Acta. xxx (2013) xxx-xxx.
[31] P. X. Gao and Z. L. Wang, “Substrate Atomic-Termination-Induced Anisotropic
Growth of ZnO Nanowires/Nanorods by the VLS process,” J. Phys. Chem. B
108 (2004) 7534-7.
[32] S. Y. Li, C. Y. Lee, and T. Y. Tseng, “Copper-Catalyzed ZnO Nanowires on
Silicon 100) Grown by Vapor-Liquid-Solid Process,” J. Cryst. Growth 247 (2003)
357-362.
[33] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a
simple way of thermal evaporation”, 2002 American Institute of Physics
[34] Seung Chul Lyua, Ye Zhanga, Hyun Ruhb, Hwack-Joo Leeb, Hyun-Wook
Shimc, Eun-Kyung Suhc, Cheol Jin Leea, “Low temperature growth and
photoluminescence of well-aligned zinc oxide nanowires”, DOI: 10.1016/S0009-
2614(02)01145-4
[35] S.N. Bai, H.H. Tsai, T.Y. Tseng, “Structural and optical properties of Al-doped
ZnO nanowires synthesized by hydrothermal method”
[36] Chih-Hsiung Hsu and Dong-Hwang Chen, “Synthesis and conductivity
enhancement of Al-doped ZnO nanorod array thin films”
[37] Jijun Qiu, Xiaomin Li, Weizhen He, Se-Jeong Park, Hyung-Kook Kim, Yoon-Hwae Hwang, Jae-Ho Lee, and Yang-Do Kim, “The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method,” Nanotechnology. 20 (2009) 155603.
[38] Jing-Hua Tian, Jie Hu, Si-Si Li, Fan Zhang, Jun Liu, Jian Shi, Xin Li, Zhong-Qun Tian, and Yong Chen, “Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires,” Nanotechnology. 22 (2011) 245601.
[39] G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, “Influence of pH, Precursor Concentration,Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method,” Nanomaterials. 10 (2011) 269692.
[40] Zhiqing Zhang and Jin Mu, “Hydrothermal synthesis of ZnO nanobundles
controlled by PEO–PPO–PEO block copolymers,” J. Colloid Interf. Sci. 307
(2007) 79-82.
[41] Renee B. Peterson , Clark L. Fields , and Brian A. Gregg, “Epitaxial Chemical
Deposition of ZnO Nanocolumns from NaOH Solutions,” Langmuir. 20 (2004)
5114-5118.
[42] Zhengzhi Zhou and Yulin Deng, “Kinetics Study of ZnO Nanorod Growth in Solution,” J. Phys. Chem. C 113 (2009) 19853-19858.
[43] Marcus Lippold, Uwe Böhme, Christoph Gondek, Martin Kronstein, Sebastian
Patzig-Klein, Martin Weser, and Edwin Kroke, “Etching Silicon with HF–
HNO3–H2SO4/H2O Mixtures – Unprecedented Formation of Trifluorosilane,
Hexafluorodisiloxane, and Si–F Surface Groups”
[44] Jijun Qiu, Xiaomin Li, Weizhen He, Se-Jeong Park, Hyung-Kook Kim, Yoon-Hwae Hwang, Jae-Ho Lee, and Yang-Do Kim, “The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method,” Nanotechnology. 20 (2009) 155603.
[45] G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, “Influence of pH, Precursor Concentration,Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method,” Nanomaterials. 10 (2011) 269692.
[46] J. Wanger, “Photoluminescense and Excitation Spectroscopy in Heavily Doped
N- and P-Type Silicon,” Phys. Rev. B 29 (1984) 2002-2009.
[47] Chaehwan JEONG, Ho-Sung KIM, Duck-Rye CHANG, and Koichi KAMISAKO1,“Effect on Al2O3 Doping Concentration of RF Magnetron Sputtered ZnO:Al Films for Solar Cell Applications”, Japanese Journal of Applied Physics Vol. 47, No. 7, 2008, pp. 5656–5658
[48] Yen-Chun Chao , Cheng-Ying Chen , Chin-An Lin , Yu-An Dai and Jr-Hau He *,“Antireflection effect of ZnO nanorod arrays”, J. Mater. Chem.,2010, 20, 8134-8138
[49] C. Chandrinou, N. Boukos, C. Stogios, A. Travlos,“ PL study of oxygen defect formation in ZnO nanorods”, Microelectronics Journal 40 (2009) 296–298
[50] D. Dimova-Malinovska, N. Tzenov, M. Tzolov and L.
Vassilev,Materials Science and Engineering ,Vol.52, p.59, 1998.
[51] Tetsuay Yamamoto and Hiroshi Katayama-Yoshida, J.
CrystalGrowth , Vol.214, p.552 ,2002.
[52] D. H. Zhang, T. L. Yang, Q. P. Wang and D. J. Zhang, Materials
Chemistry and Physics, Vol. 68, p.233, 2001.
[53] A. V. Singh and R. M. Mehra, J. Appl. Phys, Vol. 90, p.566,2001.

[54] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches,” Adv. Mater. 14 (2002) 158-60.
[55] D. R. Vij and N. Singh, “Luminescence and Related of Ⅱ-Ⅳ Semiconductors,” Nova Science Publishers, N. Y. ,1998.
[56] V. Srikant and D. R. Clarke, “Optical Absorption Edge of ZnO Thin Films: The Effect of Substrate,” J. Appl. Phys. 81 (1997) 6357-6364.
[57] X. Chen, W. Guan, G. Fang, and X. Z. Zhao, “Influence of Substrate Temperature and Post-Treatment on the Properties of ZnO:Al Thin Films Prepared by Pulsed Laser Deposition,” Appl. Surf. Sci. 252 (2005) 1561-1567.
[58] S. S. Lin, J. L. Huang, and P. Šajgalik, “The Properties of Heavily Al-Doped ZnO Films before and after Annealing in the Different Atmosphere,” Surf. Coat. Technol. 185 (2004) 254-263.
[59] C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, A. K. Pradhan, “Effects of Substrate Temperature on the Optical and Electrical Properties of Al : ZnO Films, Semicond,” Sci. Technol. 23 (2008) 085019.
[60] D.Y. Song, “Effects of RF Power on Surface-Morphological, Structural and Electrical Properties of Aluminium-Doped Zinc Oxide Films by Magnetron Sputtering, ” Appl. Surf. Sci. 254 (2008) 4171-4178.
[61] J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, B. H. Zhao, “Carrier Concentration Dependence of Band Gap Shift in N-Type ZnO : Al Films, ” J. Appl. Phys. 101 (2007) 083705.
[62] Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang and L. S. Wen, J. Appl. Phys, Vol.90,p.3432,2001.
[63] Zhengzhi Zhou and Yulin Deng, “Kinetics Study of ZnO Nanorod Growth in Solution,” J. Phys. Chem. C 113 (2009) 19853-19858.
[64] J. S. Rowlinson and B. Widom, “Molecular Theory of Capillarity,” OXFORD Science Publications, 66, 816 (1982).
[65] R. N. Wenzel, “Surface Roughness and Contact Angle,” J. Phys. Chem. 53 (1949) 1466-1467.
[66] A. B. D. Cassie and S. Baxter, “Contact Angle,” Trans. Faraday Soc. 40 (1944) 546.
[67] D. Quéré, “Rough Ideas on Wetting,” Physica A 313 (2002) 32-46.
[68] Jun Zhang, YanruLiu, Zhiyang Wei, and Junyan Zhang, “Mechanism for wettability alteration of ZnO nanorod arrays via thermal annealing in vacuum and air,” Appl. Surf. Sci., 265 (2013) 363-368.
[69] Sijing Xie, Yan Zhao, and Yijian Jiang, “Laser-induced hydrophobicity on single crystal zinc oxide surface,” Appl. Surf. Sci. 263 (2012) 405-409
[70] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire Ultraviolet
Photodetectors and Optical Switches,” Adv. Mater. 14 (2002) 158-60.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明