博碩士論文 101326006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.237.66.86
姓名 莊惠婷(Huei-ting Jhuang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 製備金奈米粒子/多壁奈米碳管修飾玻璃碳電極汞(Ⅱ)之循環伏安法分析
(Determination of mercury(Ⅱ) using gold nanoparticles/ multi-walled carbon nanotubes composite modified glassy carbon electrode via cyclic voltammetry)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究運用化學還原法製備金奈米粒子/多壁奈米碳管複合材料修飾玻璃碳電極進行汞(Ⅱ)之循環伏安法分析,藉由調整汞(Ⅱ)溶液在不同pH條件及添加氯離子使汞(Ⅱ)主要物種分布改變下,瞭解修飾電極對汞(Ⅱ)主要物種改變之伏安法影響,最後瞭解修飾電極偵測水中不同濃度汞(Ⅱ)之還原電流值與濃度的相關性。由TEM、XRD、UV及EDS分析結果顯示利用化學還原法可有效製備金奈米粒子且與多壁奈米碳管複合狀況良好,而由電化學實驗可知修飾電極的反應面積皆大於玻璃碳電極,因此可得較大的偵測電流訊號值。當pH調整時,三種修飾電極皆會因汞(Ⅱ)主要物種分布改變而還原電位改變,但當氯離子添加時,僅10-GNP/MWCNTs修飾電極的偵測還原電位會偏移,最後修飾電極偵測不同濃度汞(Ⅱ)時,修飾電極的還原電流訊號值與汞(Ⅱ)濃度間(1 ppb ~ 10 ppb)的相關係數(R2)均有0.9以上是可信的線性關係,表示利用修飾電極伏安法分析汞(Ⅱ)是具有選擇性且可行的方法。
摘要(英) The objective of this work was to prepare gold nanoparticles (GNP)/ multi-walled carbon nanotubes (MWCNTs) composite to modified glassy carbon electrode (GCE), which was used to analyze Hg (Ⅱ) by cyclic voltammetry (CV). It was found that modification via GNP/MWCNTs composite increased the active area. In order to investigate the influences of speciation on the reduction peak currents, CV was conducted at different solution pH and with addition of NaCl. When the solution pH was adjusted, the shift of the reduction peak of Hg was measured by all three modified electrodes. When NaCl was added, only the GCE electrode modified by 10-GNP/MWCNTs measured the shift of the reduction peak of Hg. These indicated that the CV by GNP/MWCNTs modified GCE electrodes can monitored the changes in speciation. Linear response between the reduction peak current and Hg concentration ranged from 1 ppb to 10 ppb has been found in all three modified electrodes This suggested that using GNP/MWCNTs modified GCE electrodes to analyze Hg concentration via cyclic voltammetry may be feasible.
關鍵字(中) ★ 金奈米顆粒
★ 物種分布
★ 化學還原法
關鍵字(英) ★ gold nanoparticles
★ mercury speciation
★ chemical reduction
論文目次 目錄
中文摘要 I
Abstract II
致謝 III
圖目錄 VII
表目錄 X
第一章 前言 1
1.1研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1電化學分析原理 5
2.1.1電化學反應系統 5
2.1.2循環伏安法 7
2.2 汞的基本介紹 11
2.2.1汞的基本特性 11
2.2.2汞的毒性與污染問題 12
2.2.3水體中汞之化學組成及其移動性 15
2.2.4汞的電化學分析 19
2.3金奈米粒子 22
2.3.1基本特性 22
2.3.2金屬奈米粒子製備-化學還原法 23
2.3.3金屬奈米粒子穩定化理論 23
2.4 奈米碳管電化學分析應用 26
2.4.1 奈米碳管表面改質對於電化學訊號的影響 26
2.4.2金屬/CNT複合材料電極 30
2.4.3奈米碳管電化學電極分析應用 32
第三章 實驗方法 36
3.1實驗材料與設備 36
3.1.1實驗材料 36
3.1.2實驗設備 38
3.2實驗方法 40
3.2.1 奈米碳管之純化方法 42
3.2.2 GNPs/MWCNTs複合材料製備 43
3.2.3複合材料修飾電極與支持電解液之製備 45
3.2.4 伏安法分析 46
第四章 結果與討論 49
4.1奈米碳管複合材料特性分析 49
4.1.1穿透式電子顯微鏡(TEM)分析 49
4.1.2 X-ray繞射(XRD)晶格結構分析 53
4.1.3 UV/Vis吸收光譜分析 56
4.1.4掃描電子顯微鏡(SEM)與能量分散光譜儀(EDS)分析 59
4.2奈米碳管複合材料修飾電極之電化學特性 61
4.2.1奈米碳管複合材料修飾電極之穩定性分析 61
4.2.2奈米碳管複合材料修飾電極之電化學感測特性分析 64
4.3修飾電極對不同汞離子狀態之伏安法分析 68
4.3.1 pH調整對汞離子伏安法分析之影響 68
4.3.2氯離子添加對汞離子伏安法分析之影響 74
4.4修飾電極對汞離子濃度變化之伏安法分析 78
第五章 結論與建議 87
5.1結論 87
5.2建議 88
參考文獻 90
參考文獻 Alloway, B. J., "Heavy metals in soils", Springer, (1990).

Balasubramanian, K., and Burghard, M., "Electrochemically functionalized carbon nanotubes for device applications", Materials Chemistry, 18, 3071-3083 (2008).

Bard, A. J., and Faulkner, L. R., "Electrochemical methods fundamental and application", John Wiley and Sons Canada 2nd ed, (2001).

Barringer, J. L., Szabo, Z., and Reilly, P. A., "Occurrence and mobility of mercury in groundwater", Intech, (2013).

Bodek, I., Lyman, W. J., Reehl, W. F., and Rosenblatt, D. H., "Environmental inorganic chemistry: properties, processes, and estimation methods", Pergamon Press, (1988).

Buica, G. O., Bucher, C., Moutet, J.-C., Royal, G., Saint-Aman, E., and Ungureanu, E. M., "Voltammetric sensing of mercury and copper cations at poly(EDTA-like) film modified electrode", Electroanalysis, 21, 77-86 (2009).

Chin, C.-J. M., Shih, L.-C., Tsai, H.-J., and Liu, T.-K., "Adsorption of o-xylene and p-xylene from water by SWCNTs", Carbon, 45, 1254-1260 (2007).

Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N., "Mercury as a global pollutant :sources, pathway, and effects", Environmental Science and Technology, 47, 4967-4983 (2013).

Fergusson, J. E., "The heavy elements: chemistry, environmental impact and health effects", Pergamon Press, (1990).

Gabriel, M. C., and Williamson, D. G., "Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment", Environmental Geochemistry and Health, 26, 421-434 (2004).


Ghadimi, H., Tehrani, R. M., Ali, A. S., Mohamed, N., and Ghani, S. A., "Sensitive voltammetric determination of paracetamol by poly (4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode", Analtica Chimica Acta, 765, 70-76 (2013).

Giacomino, A., Abollino, O., Malandrino, M., and Mentasti, E., "Parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode", Talanta, 75, 266-273 (2008).

Gu, B., Bian, Y., Miller, C. L., Dong, W., Jiang, X., and Liang, L., "Mercury reduction and complexation by natural organic matter in anoxic environments", Proceedings of the National Academy of Sciences, 108, 1479-1483 (2011).

Guo, Y., Guo, S., Fang, Y., and Dong, S., "Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan", Electrochimica Acta, 55, 3927-3931 (2010).

Harada, M., "Minimata disease: Methylmercury poisoning in Japan caused by Environmental pollution", Critical Reviews in Toxicology, 25, 1-24 (1995).

Hatch, W. R., and Ott, W. L., "Determination of sub-microgram quantities of mercury by atomic absorption spectrophotometry", Analyical Chemistry, 40, 2085-2087 (1968).

Heras, A., Colina, A., López-Palacios, J., Ayala, P., Sainio, J., Ruiz, V., and Kauppinen, E. I., "Electrochemical purification of carbon nanotube electrodes", Electrochemistry Communications, 11, 1535-1538 (2009).

Hrapovic, S., Liu, Y., Male, K. B., and Luong, J. H. T., "Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes", Analytical Chemistry, 76, 1083-1088 (2004).

Kim, J., Rabbani, M. M., Kim, D., Ree, M., Yeum, J. H., Ko, C. H., Kim, Y., Bae, J.-S., and Oh, W., "Structural and electrochemical properties of gold-deposited carbon nanotube composites", Current Applied Physics, 10, S201-S205 (2010).



Kruusenberg, I., Alexeyeva, N., Tammeveski, K., Kozlova, J., Matisen, L., Sammelselg, V., Solla-Gullón, J., and Feliu, J. M., "Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution", Carbon, 49, 4031-4039 (2011).

Male, K. B., Hrapovic, S., Liu, Y., Wang, D., and Luong, J. H. T., "Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes", Analytica Chimica Acta, 516, 35-41 (2004).

Martin-Yerga, D., Gonzalez-Garcia, M. B., and Costa-Garcia, A., "Electrochemical determination of mercury: a review", Talanta, 116, 1091-104 (2013).

McCreery, R. L., "Advanced carbon electrode materials for molecular electrochemistry", Chemical Reviews, 108, 2646-2687 (2008).

Morita, H., Sugimo, M., and Shimomura, S., "Selective determination of inorganic and total mercury by cold vapor atomic fluorescence spectrometry coupled with flow injection analysis", Analyical Sciences February, 6, 91-95 (1990).

Mousty, C., "Sensors and biosensors based on clay-modified electrodes?new trends", Applied Clay Science, 27, 159-177 (2004).

Rabbani, M. M., Ko, C. H., Bae, J.-S., Yeum, J. H., Kim, I. S., and Oh, W., "Comparison of some gold/carbon nanotube composites prepared by control of electrostatic interaction", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 336, 183-186 (2009).

Salinas-Torres, D., Huerta, F., Montilla, F., and Morallón, E., "Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes", Electrochimica Acta, 56, 2464-2470 (2011).

Schlüter, K., "Review: evaporation of mercury from soils. An integration and
synthesis of current knowledge", Environmental Geology, 39, 249-271 (2000).

Silva, F. A. S., Silva, M. G., Lima , P. R. L., Meneghetti , M. R., Kubota, L. T., and Goulart, M. O. F., "A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods", Biosens Bioelectron, 50, 202-209 (2013).
Sun, D., Xie, X., Cai, Y., Zhang, H., and Wu, K., "Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film", Analtica Chimica Acta, 581, 27-31 (2007).

Turyan, I., Atiya, M., and Mandler, D., "Comparing different approaches for assembling selective electrodes for heavy metals", Electroanalysis, 13, 653-659 (2001).

UNEP, "Global mercury assessment", (2002).

USEPA, "Health services industry detailed study-dental amalgam", (2008).

Wang, J., "Analytical Electrochemistry", Wiley, (2006).

Wang, S., Jiang, S. P., and Wang, X., "Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation", Nanotechnology, 19, 265601 (2008).

Wang, Y., Du, G., Zhu, L., Liu, H., Wong, C.-P., and Wang, J., "Aligned open-ended carbon nanotube membranes for direct electrochemistry applications", Sensors and Actuators B: Chemical, 174, 570-576 (2012).

Wei, J., Yang, D., Chen, H., Gao, Y., and Li, H., "Stripping voltammetric determination of mercury(II) based on SWCNT-PhSH modified gold electrode", Sensors and Actuators B: Chemical, 190, 968-974 (2014).

Wu, F.-H., Zhao, G.-C., and Wei, X.-W., "Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode", Electrochemistry Communications, 4, 690-694 (2002).

Wu, K., Hu, S., Fei, J., and Bai, W., "Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes", Analytica Chimica Acta, 489, 215-221 (2003).

Yao, Y. L., and Shiu, K. K., "Direct electrochemistry of glucose oxidase at carbon nanotube‐gold colloid modified electrode with poly(diallyldimethylammonium chloride) coating", Electroanalysis, 20, 1542-1548 (2008).

Yuan, S., He, Q., Yao, S., and Hu, S., "Mercury‐free detection of europium (III) at a glassy carbon electrode modified with carbon nanotubes by adsorptive stripping voltammetry", Analytical Letters, 39, 373-385 (2006).

王鳳英, "界面活性劑的原理與應用", 高立圖書有限公司 (1996).

行政院環境保護署環境檢驗所, "水中汞檢測法-冷蒸氣原子吸收光譜法", (2006).

行政院環境保護署環境檢驗所, "水中汞檢測法-冷蒸氣原子螢光光譜法", (2008).

宋德高, 劉沛宏, 張以燦, 陸瑩, 許益源, 曾素媛, 吳芳娥, 馮金源, 陳秀敏, 吳堉鑾, 杜盛清, 許麗娟, 鍾麗娟, 與張俊鴻, "非法棄置事業廢棄物場址危害評估", TASGEP Newsletter 3, 3-6 (2002).

李佳樺, "東亞大氣汞之長程輸送研究: 雲水中汞之定量分析與指紋之建立", 國立中央大學化學研究所 (2004).

李映瑩,蔡宗霖, 和謝達斌 "金奈米粒子於生物醫學上的應用", 化學專題回顧第六十八卷第一期, 11-12 (2010).

阮國棟, "汞之污染特性及處理技術", 工業污染防治 第四卷 第三期, 161-186 (1985).

胡啟章, "電化學原理與方法", 五南圖書出版社 (2011).

綠色陣線協會, "我們做的事-台鹼安順廠",

歐陽姍佩, "鹼性溶液中鎳大環錯鹽聚合膜修飾電極對甲醇及苯甲醇之氧化電觸媒行為研究", 國立台南師範學院自然科學教育學系 (2004).

鄭人豪, "白金奈米顆粒修飾玻璃碳電極及其應用於葡萄糖生醫感測器之研究", 南台科技大學化學工程研究所 (2004).
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2015-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明