博碩士論文 101326008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.235.179.111
姓名 鍾瑋杰(Wei-chieh Chung)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以鐵電材料搭配非熱電漿行CO2/CH4重組反應生成合成氣之研究
(Dry Reforming of Methane with DBD and Ferroelectrics Packed-bed DBD Reactors)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全球暖化(Global Warming)為二十世紀後半以來全球關注的重要議題,降低溫室氣體(GHGs)之排放以減緩全球暖化已成全球關注的焦點。將CO2及CH4進行重組反應可同時減少兩種主要溫室氣體之排放,且主要產物為合成氣(Syngas)可做為燃料或經由費拖反應合成碳氫化合物,為具有潛力且值得發展之技術。本研究以介電質放電進行CO2/CH4重組,並以溶膠凝膠法製備具有鐵電性質之弛緩鐵電體(BaZr0.75Ti0.25O3 (BZT, εr = 149)或BaFe0.5Nb0.5O3 (BFN, εr = 2025))填入反應床輔助進行反應,結果顯示在CH4/CO2 =1、電壓為13.6 kV、頻率為20,000 Hz及總流率為40 mL/min之條件下,未添加鐵電材料、搭配BZT填充床及搭配BFN填充床的反應器所得之二氧化碳轉化率分別為51.0%、52.7%及57.0%,甲烷轉化率分別為64.6%、66.4%及72.0%,一氧化碳選擇性分別為54.0%、55.6%及59.2%,氫氣選擇性分別為59.1%、63.6%及65.5%。能量效率方面分別為3.19 mol/kWh、3.81 mol/kWh及3.83 mol/kWh,證明介電質放電和弛緩鐵電體之間存在協同效應。另一方面,在CH4/CO2 = 3、電壓為13.6 kV、頻率為20,000 Hz、總流率為40 mL/min之條件下且搭配BFN填充床進行重組時,能量效率達5.16 mol/kWh。
摘要(英) Global warming has been a big concern since 20th century and how to reduce the emissions of greenhouse gases (GHGs) into atmosphere has become an important issue. Carbon dioxide reforming of methane to generate syngas has the advantages of converting two major GHGs simultaneously and producing syngas to be utilized as fuel or as feedstock of Fischer-Tropsch process. This study is motivated to reform CH4 with CO2 via dielectric barrier discharge (DBD), and catalyst packed bed composed by BaZr0.75Ti0.25O3 (BZT, εr = 149) or BaFe0.5Nb0.5O3 (BFN, εr = 2025) prepared by sol-gel method. The results show that with the conditions of CH4/CO2 ratio of 1, applied voltage of 13.6 kV, frequency of 20,000 Hz and flow rate of 40 mL/min, the CO2 conversions achieved with DBD alone, BZT packed bed and BFN packed bed are 43.4%, 52.7% and 57.0%, respectively, in the meantime, methane conversion efficiencies are 64.6%, 66.4% and 72.0%, respectively. The energy efficiency achieved with plasma alone is 3.66 mol/kWh, and it increases to 3.81 mol/kWh and 3.83 mol/kWh, respectively, as BZT and BFN are used as the catalyst. The results proved the combination of DBD and relaxor ferroelectric induces synergistic effect and enhances DRM. Moreover, with feeding CH4/CO2 ratio of 3, applied voltage of 13.6 kV, frequency of 20,000 Hz, flow rate of 40 mL/min and with BFN packed bed reactor, energy efficiency reaches 5.16 mol/kWh which is significantly higher than that achieved with plasma alone.
關鍵字(中) ★ CO2/CH4重組反應
★ 非熱電漿
★ 介電質放電
★ 鐵電材料
★ 合成氣
關鍵字(英) ★ Dry Reforming of Methane
★ Dielectric Barrier Discharge
★ Non-Thermal Plasma
★ Ferroelectric Catalyst
★ Syngas
論文目次 第一章 前言 ....................................................................................................1
1.1 研究緣起 ............................................................................................1
1.2 研究目的 ............................................................................................5
第二章 文獻回顧 ............................................................................................6
2.1 溫室氣體的來源及特性....................................................................6
2.2 二氧化碳的減量技術及再利用........................................................8
2.2.1 前處理技術 ....................................................................................8
2.2.2 後續處理技術 ................................................................................8
2.2.3 二氧化碳再利用 ............................................................................9
2.3 甲烷重組反應 ....................................................................................9
2.3.1 水氣甲烷重組反應 ........................................................................9
2.3.2 甲烷部分氧化反應 ......................................................................10
2.3.3 二氧化碳甲烷重組反應 ..............................................................10
2.4 費托反應 ..........................................................................................12
2.5 電漿 ..................................................................................................13
2.5.1 電漿反應 ......................................................................................15
2.5.2 非熱電漿 ......................................................................................16
2.6 鐵電材料 ..........................................................................................19
2.7 甲烷二氧化碳重組之反應機制及動力學......................................21
2.7.1 未添加觸媒之反應機制 ..............................................................21
2.7.2 以觸媒進行重組之反應機制 ......................................................21
2.7.3 以電漿進行重組之反應機制 ......................................................22
第三章 研究設備與方法 ..............................................................................34
3.1 研究流程及架構 ..............................................................................34
3.2 實驗藥品、氣體及設備..................................................................35
3.2.1 實驗藥品 ......................................................................................35
3.2.2 實驗氣體 ......................................................................................36
3.2.3 實驗儀器設備 ..............................................................................36
3.3 觸媒材料製備 ..................................................................................37
3.4 觸媒材料之物化特性分析..............................................................38
3.4.1 X 光粉末繞射分析儀...................................................................39
3.4.2 高解析度比表面積分析儀 ..........................................................40
3.4.3 掃描式電子顯微鏡 ......................................................................40
3.4.4 傅立葉轉換紅外線光譜分析 ......................................................41
3.4.5 三相電表 ......................................................................................41
3.5 重組實驗 ..........................................................................................42
3.5.1 反應設備 ......................................................................................42
3.5.2 重組反應 ......................................................................................44
3.5.3 實驗結果之計算 ..........................................................................44
第四章 結果與討論 ......................................................................................48
4.1 輸入電壓對重組反應之影響..........................................................48
4.2 總氣體流率對重組反應之影響......................................................52
4.3 進氣比對重組反應之影響..............................................................54
4.4 結合鐵電觸媒對重組反應之影響..................................................57
4.4.1 鐵電觸媒對放電功率之影響 ......................................................57
4.4.2 鐵電觸媒對轉化率之影響 ..........................................................59
4.4.3 鐵電觸媒對選擇性之影響 ..........................................................60
4.4.4 鐵電觸媒對元素平衡之影響 ......................................................61
4.4.5 鐵電觸媒對能量效率之影響 ......................................................62
4.5 鐵電觸媒之物化特性分析..............................................................63
4.5.1 XRD..............................................................................................63
4.5.2 FT-IR.............................................................................................63
4.5.3 BET...............................................................................................63
4.5.4 LCR...............................................................................................64
4.5.5 SEM ..............................................................................................64
4.6 鐵電觸媒之活性測試......................................................................65
4.7 碳氫化合物之生成..........................................................................65
第五章 結論與建議 ......................................................................................98
5.1 結論 ..................................................................................................98
5.2 建議 ..................................................................................................99
參考文獻...........................................................................................................100
參考文獻 [1] “經濟部能源局101年年報”,民102年。
[2] UNFCCC, “Kyoto Protocol to the United Nations Framework Convention on Climate Changes”, Kyoto (2003).
[3] “行政院能源產業技術白皮書”,民101年。
[4] 陳維新、江金龍,“空氣污染與防制”,高立圖書有限公司,民100年。
[5] “經濟部能源局2011年10月能源報導”,民100年。
[6] Global CCS Institute, “Thirteenth Annual CCUS Conference Agenda”, Pittsburgh (2014).
[7] O. Bičáková, P. Straka, “Production of Hydrogen from Renewable Resources and its Effectiveness”, International Journal of Hydrogen Energy, 37, 11563-11578 (2012).
[8] X. Tao, M. Bai, X. Li, H. Long, S. Shang, Y. Yin, X. Dai, “Review: CH4-CO2 Reforming by Plasma - Challenges and Opportunities”, Progress in Energy and Combustion Science, 37, 113-124 (2011).
[9] S. Wang, G. Q. M. Lu, “CO2 Reforming of Methane on Ni Catalysts: Effects of the Support Phase and Preparation Technique”, Applied Catalysis B: Environmental, 16, 269-277 (1998).
[10] D. Li, Y. Nakagawa, K. Tomishige, “Methane Reforming to Synthesis Gas over Ni Catalysts Modified with Noble Metals”, Applied Catalysis A: General, 408, 1–24 (2011).
[11] J. Luche, O. Aubry, A. Khacef, J. Cormier, “Syngas Production from Methane Oxidation Using a Non-Thermal Plasma: Experiments and Kinetic Modeling”, Chemical Engineering Journal, 149, 35–41 (2009).
[12] J. V. Durme, J. Dewulf, C. Leys, H. V. Langenhove, “Combining Non-Thermal Plasma with Heterogeneous Catalysis in Waste Gas Treatment: A Review”, Applied Catalysis B: Environmental, 78, 324–333 (2008).
[13] M. B. Chang, H. M. Lee, Abatement of Perfluorocarbons with Combined Plasma Catalysis in Atmospheric-Pressure Environment, Catalysis Today, 89, 109–115 (2004).
[14] H. L. Chen, H. M. Lee, S. H. Chen, Y. Chao, M. B. Chang, “Review of Plasma Catalysis on Hydrocarbon Reforming for Hydrogen Production—Interaction, Integration, and Prospects”, Applied Catalysis B: Environmental, 85, 1-9 (2008).
[15] H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang, S. J. Yu, S. N. Li, “Removal of Volatile Organic Compounds by Single-Stage and Two-Stage Plasma Catalysis Systems: A Review of the Performance Enhancement Mechanisms, Current Status, and Suitable Applications”, Environmental Science and Technology, 43, 2216-2227 (2009).
[16] A. Mizuno, “Generation of Non-Thermal Plasma Combined with Catalysts and Their Application in Environmental Technology”, Catalysis Today 211, 2– 8, (2013).
[17] A. Kerfah, K. Taïbi, S. Omeiri, M. Trari, “Relaxor Ferroelectric and Photocatalytic Behaviour of Ba0.785Bi0.127Y0.017TiO3 Composition”, Solar Energy, 85, 443–449 (2011).
[18] C. Y. Chung, Y. H. Chang, G. J. Chen, Y. L. Chai, “Preparation, Structure and Ferroelectric Properties of Ba(Fe0.5Nb0.5)O3 Powders by Sol–Gel Method”, Journal of Crystal Growth, 284, 100–107 (2005).
[19] W. J. Liang, L. Ma, H. Liu, J. Li, “Toluene Degradation by Non-Thermal Plasma Combined with a Ferroelectric Catalyst”, Chemosphere, 92, 1390-1395 (2013).
[20] IPCC, “Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Chap 2: Changes in Atmospheric Constituents and in Radiative Forcing", Cambridge University Press, Cambridge, 129-234 (2007).
[21] E. J. Dlugokencky, R. C. Myers, P. M. Lang, K. A. Masarie, A. M. Crotwell, K. W. Thoning, B. D. Hall, J. W. Elkins, L. P. Steele, “Conversion of NOAA Atmospheric Dry Air CH4 Mole Fractions to a Gravimetrically-Prepared Standard Scale”, Journal of Geophysical Research, 110, 1029 (2005).
[22] 顧洋、申永順,“國際間溫室氣體管理標準化之發展及因應策略”,科學與工程技術期刊,第一卷第三期,民94年。
[23] 蔣本基、顧洋、鄭耀文、林志森,“我國溫室氣體減量整體因應策略”,科學與工程技術期刊,第二卷第一期,民95年。
[24] 談駿嵩、鄭旭翔,“台灣在二氧化碳回收及再利用上之研究現況”,國立清華大學化學工程學系,民100年。
[25] J. T. Yeh, H. W. Pennline, “Study of CO2 Absorption and Desorption in a Packed Column”, Energy Fuels, 15, 274-278 (2001).
[26] G. A. Olah, A. Goeppert, G. K. Surya Prakash, “Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons”, Journal of Organic Chemistry, 74, 487-498 (2009).
[27] H. Kameyama, K. Yoshizaki, I. Yasuda, “Carbon Capture and Recycle by Integration of CCS and Green Hydrogen”, Energy Procedia, 4, 2669–2676 (2011).
[28] S. P. Naik, T. Ryu, V. Bui, J. D. Miller, N. B. Drinnan, W. Zmierczak, “Synthesis of DME from CO2/H2 Gas Mixture”, Chemical Engineering Journal, 167, 362–368 (2011).
[29] A. Boretti, “Renewable Hydrogen to Recycle CO2 to Methanol”, International Journal of Hydrogen Energy, 38, 1806-1812 (2013).
[30] Y. S. Oh, H. S. Roh, K. W. Jun, Y. S. Baek, “A Highly Active Catalyst, Ni/Ce–ZrO2/θ-Al2O3, for on-site H2 Generation by Steam Methane Reforming: Pretreatment Effect”, International Journal of Hydrogen Energy, 28, 1387-1392 (2003).
[31] M. Levent, D. J. Gunn, M. A. El-Bousi, “Production of Hydrogen-Rich Gases from Steam Reforming of Methane in an Automatic Catalytic Microreactor”, International Journal of Hydrogen Energy, 28, 945–959 (2003).
[32] V. R. Choudhary, K. C. Mondal, “CO2 Reforming of Methane Combined with Steam Reforming or Partial Oxidation of Methane to Syngas over NdCoO3 Perovskite-Type Mixed Metal-Oxide Catalyst”, Applied Energy, 83, 1024–1032 (2006).
[33] P. Wu, X. Li, S. Ji, B. Lang, F. Habimana, C. Li, “Steam Reforming of Methane to Hydrogen over Ni-Based Metal Monolith Catalysts”, Catalysis Today,146, 82–86 (2009).
[34] S. D. Angeli, G. Monteleone, A. Giaconia, A. A. Lemonidou, “State-of-the-art Catalysts for CH4 Steam Reforming at Low Temperature”, International Journal of Hydrogen Energy, 39, 1979-1997 (2014).
[35] B. C. Enger, R. Lødeng, A. Holme, “A Review of Catalytic Partial Oxidation of Methane to Synthesis Gas with Emphasis on Reaction Mechanisms Over Transition Metal Catalysts”, Applied Catalysis A: General, 346, 1–27 (2008).
[36] H. Özdemir, M.A. F. Öksüzömer, M. A. Gürkaynak, “Effect of the Calcination Temperature on Ni/MgAl2O4 Catalyst Structure and Catalytic Properties for Partial Oxidation of Methane”, Fuel, 116, 63–70 (2014).
[37] F. Fischer, H. Tropsch, “Conversion of Methane into Hydrogen and Carbon Monoxide”, Brennstoff -Chemie, 3, 39 (1928).
[38] M. C. J. Bradford, M. A. Vannice, “CO2 Reforming of CH4”, Catalysis Reviews: Science and Engineering, 41, 1-42 (1999).
[39] G. S. Gallego, F. Mondragόn, J. Barrault, J. M. Tatibouet, C. B. Dupeyrat, “Carbon Dioxide Reforming of Methane over La2NiO4 as Catalyst Precursor-Characterization of Carbon Deposition”, Catalysis Today, 133-135, 200-209 (2008).
[40] M. S. Fan, A. Z. Abdullah, S. Bhatia, “Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas”, Chemical Catalysis Chemistry, 1, 192-208 (2009).
[41] L. D. Vella, J. A. Villoria, S. Specchia, N. Mota, J. L. G. Fierro, V. Specchia, “Catalytic Partial Oxidation of CH4 with Nickel–Lanthanum–Based Catalysts”, Catalysis Today, 84-96 (2011).
[42] T. Kaneko, F. Derbyshire, E. Makino, D. Gray, M. Tamura, “Coal Liquefaction”, Ullmann′s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim (2001).
[43] A. Y. Khodakov, W. Chu, P. Fongarland, “Advances in the Development of Novel Cobalt Fischer–Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels”, Chemical Reviews, 107, 1692–1744 (2007).
[44] C. M. Balonek, A. H. Lillebø, S. Rane, E. Rytter, L. D. Schmidt, A. Holmen, “Effect of Alkali Metal Impurities on Co–Re Catalysts for Fischer–Tropsch Synthesis from Biomass-Derived Syngas”, Catalysis Letters, 138, 8–13 (2010).
[45] W. Al-Shalchi, “Gas to Liquid Technology”, Baghdad (2006).
[46] Y. P. Raizer, J. E. Allen, V. I. Kisin, “Gas Discharge Physics”, Nauka, Moscow (1991).
[47] H. H. Kim, G. Prieto, K. Takahima, S. Katsura, A. Mizuno, “A Performance Evaluation of Discharge Plasma Process for Gaseous Pollutant Removal”, Journal of Electrostatics, 55, 25-41 (2002).
[48] J. S. Chang, P. C. Looy, K. Nagai, T. Yoshioka, S. Aoki, A. Maezawa, ”Preliminary Pilot Plant Tests of a Corona Discharge-Electron Beam Hybrid Combustion Flue Gas Cleaning System”, IEEE Transactions on Industry Applications, 32, 131-136 (1996).
[49] U. Kogelschatz, B. Eliasson, W. Egli, “From Ozone Generators to Flat Television Screens: History and Future Potential of Dielectric-Barrier Discharges”, Pure and Applied Chemistry, 71, 1819-1828 (1999).
[50] U. Kogelschatz, “Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications”, Plasma Chemistry and Plasma Processing, 23, 1-46 (2003).
[51] B. Eliasson, U. Kogelschatz, “Non Equilibrium Volume Plasma Chemical Processing”, IEEE Transactions on Industry Applications, 19, 1063-1077 (1991).
[52] 高正雄,“電漿化學”,復漢出版社,民80年。
[53] A. Chelkowski, “Dielectric Physics”, Silesian University Katowise, Poland (1979).
[54] K. Uchino, “Ferroelectric Device”, Marcel dekker, Inc., New York (2000).
[55] 吳朗,”電子陶瓷”,全欣科技圖書,民83年。
[56] A. A. Bokov, Z. G. Ye, “Recent Progress in Relaxor Ferroelectrics with Perovskite Structure”, Journal of Materials Science, 41, 31-52 (2006).
[57] S. G. Wang, Y. W. Li, J. X. Lu, M. Y. He, H. J. Jiao, “A Detailed Mechanism of Thermal CO2 Reforming of CH4”, Journal of Molecular Structure, 673, 181-189 (2004).
[58] G. Valderrama, M. R. Goldwasser, C. U. Navarro, J. M. Tatibouët, J. Barrault, C. Batiot-Dupeyrat, F. Martĺnez, “Dry Reforming of Methane over Ni Perovskite Type Oxides”, Catalysis Today, 107-108, 785-791 (2005).
[59] M. Haghighi, Z. Q. Sun, J. h. Wu, J. Bromly, H. L. Wee, E. Ng, Y. Wang, D. K. Zhang, “On the Reaction Mechanism of CO2 Reforming of Methane over a Bed of Coal Char”, Proceedings of the Combustion Institute, 31, 1983-1990 (2007).
[60] X. Li, S. Li, Y. Yang, M. Wu, F. He, “Studies on Coke Formation and Coke Species of Nickel-Based Catalysts in CO2 Reforming of CH4”, Catalysis Letters, 118, 59-63 (2007).
[61] M. E. Rivas, J. L. G. Fierro, M. R. Goldwasser, E. Pietri, M. J. Pérez-Zurita, A. Griboval-Constant, G. Leclercq, “Structural Features and Performance of LaNi1-xRhxO3 System for the Dry Reforming of Methane”, Applied Catalysis A: General, 344, 10-19 (2008).
[62] V. C. H. Kroll, H. M. Swaan, C. Mirodatos, “Methane Reforming Reaction with Carbon Dioxide Over Ni/SiO2 Catalyst”, Journal of Catalysis, 161, 409-422 (1996).
[63] Y. J. Su, K. L. Pan, M. B. Chang, “Modifying Perovskite-Type Oxide Catalyst LaNiO3 with Ce for Carbon Dioxide Reforming of Methane”, International Hydrogen Energy, 39, 4917-4925 (2014).
[64] A. H. Fakeeha, M. A. Naeem, W. U. Khan, A. S. Al-Fatesh, “Syngas Production via CO2 Reforming of Methane Using Co-Sr-Al Catalyst”, Journal of Industrial and Engineering Chemistry, 20, 549-557 (2014).
[65] D. San José-Alonso, M.J. Illán-Gómez, M.C. Román-Martínez, “Low Metal Content Co and Ni Alumina Supported Catalysts for the CO2 Reforming of Rethane”, International Journal of Hydrogen Energy, 38, 2230-2239 (2013).
[66] X. Zhang, W. J. Sun, W. Chu, “Effect of Glow Discharge Plasma Treatment on the Performance of Ni/SiO2 Catalyst in CO2 Methanation”, Journal of Fuel Chemistry and Technology, 41, 96-101 (2013).
[67] K. Sutthiumporn, T. Maneerung, Y. Kathiraser, S. Kawi, “CO2 Dry-Reforming of Methane over La0.8Sr0.2Ni0.8M0.2O3 Perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of Lattice Oxygen on C-H Activation and Carbon Suppression”, International Journal of Hydrogen Energy, 37, 11195-11207 (2012).
[68] G. R. Moradi, F. Khosravian, M. Rahmanzadeh, “Effects of Partial Substitution of Ni by Cu in LaNiO3 Perovskite Catalyst for Dry Methane Reforming”, Chinese Journal of Catalysis, 33, 797-801 (2012).
[69] S. Zeng, L. Zhang, X. Zhang, Y. Wang, H. Pan, H. Su, “Modification Effect of Natural Mixed Rare Earths on Co/γ-Al2O3 Catalysts for CH4/CO2 Reforming to Synthesis Gas”, International Journal of Hydrogen Energy, 37, 9994-10001 (2012).
[70] S. Damyanova, B. Pawelec, K. Arishtirova, J. L. G. Fierro, “Ni-based Catalysts for Reforming of Methane with CO2”, International Journal of Hydrogen Energy, 37, 15966-15975 (2012).
[71] N. Hadian, M. Rezaei, Z. Mosayebi, F. Meshkani, “CO2 Reforming of Methane over Nickel Catalysts Supported on Nanocrystalline MgAl2O4 with High Surface Area”, Journal of Natural Gas Chemistry, 21, 200–206 (2012).
[72] S. Damyanova, B. Pawelec, K. Arishtirova, “Biogas Reforming over Bimetallic PdNi Catalysts Supported on Phosphorus-Modified Alumina”, International Journal of Hydrogen Energy, 36, 10635-10647 (2011).
[73] J. Zhu, X. Peng, L. Yao, J. Shen, D. Tong, C. Hu, “The Promoting Effect of La, Mg, Co and Zn on the Activity and Stability of Ni/SiO2 Catalyst for CO2 Reforming of Methane”, International Journal of Hydrogen Energy, 36, 7094-7104 (2011).
[74] J.M. Bermúdez, A. Arenillas, J.A. Menéndez, “Syngas from CO2 Reforming of Coke Oven Gas: Synergetic Effect of Activated Carbon/Ni-γ-Al2O3 Catalyst”, International Journal of Hydrogen Energy, 36, 13361-13368 (2011).
[75] K. Sutthiumporn, S. Kawi, “Promotional Effect of Alkaline Earth over Ni-La2O3 Catalyst for CO2 Reforming of CH4: Role of Surface Oxygen Species on H2 Production and Carbon Suppression”, International Journal of Hydrogen Energy, 36, 14435-14446 (2011).
[76] I. Rivas, J. Alvarez, E. Pietri, M. J. Pérez-Zurita, M. R. Goldwasser, “Perovskite-Type Oxides in Methane Dry Reforming: Effect of Their Incorporation into a Mesoporous SBA-15 Silica-Host”, Catalysis Today, 149, 388-393 (2010).
[77] S. Damyanova, B. Pawelec, K. Arishtirova, J. L. G. Fierro, C. Sener, T. Dogu, “MCM-41 Supported PdNi Catalysts for Dry Reforming of Methane”, Applied Catalysis B: Environmental, 92, 250–261 (2009).
[78] A. Khalesi, H. R. Arandiyan, M. Parvari, “Effects of Lanthanum Substitution by Strontium and Calcium in La-Ni-Al Perovskite Oxides in Dry Reforming of Methane”, Chinese Journal of Catalysis, 29, 960-968 (2008).
[79] J. Chen, Q. Wu, J. Zhang, J. Zhang, “Effect of Preparation Methods on Structure and Performance of Ni/Ce0.75Zr0.25O2 Catalysts for CH4–CO2 Reforming”, Fuel, 87, 2901–2907 (2008).
[80] A. E. C. Luna, M. E. Iriarte, “Carbon Dioxide Reforming of Methane over a Metal Modified Ni-Al2O3 Catalyst”, Applied Catalysis A: General, 343, 10–15 (2008).
[81] B. Pawelec, S. Damyanova, K. Arishtirova, J. L. G. Fierro, L. Petrov, “Structural and Surface Features of PtNi Catalysts for Reforming of Methane with CO2”, Applied Catalysis A: General, 323, 188–201 (2007).
[82] W. Nimwattanakul, A. Luengnaruemitchai, S. Jitkarnka, “Potential of Ni Supported on Clinoptilolite Catalysts for Carbon Dioxide Reforming of Methane”, International Journal of Hydrogen Energy, 31, 93–100 (2006).
[83] W. D. Zhang, B.S. Liu, C. Zhu, Y.L. Tian, “Preparation of La2NiO4/ZSM-5 Catalyst and Catalytic Performance in CO2/CH4 Reforming to Syngas”, Applied Catalysis A: General, 292, 138–143 (2005).
[84] A. Nandini, K. K. Pant, S.C. Dhingra, “K-, CeO2-, and Mn-Promoted Ni/Al2O3 Catalysts for Stable CO2 Reforming of Methane”, Applied Catalysis A: General, 290, 166–174 (2005).
[85] F. Pompeo, N. N. Nichio, M. G. González, M. Montes, “Characterization of Ni/SiO2 and Ni/Li-SiO2 Catalysts for Methane Dry Reforming”, Catalysis Today, 107-108, 856–862 (2005).
[86] J. Guo, H. Lou, H. Zhao, D. Chai, X. Zheng, “Dry Reforming of Methane over Nickel Catalysts Supported on Magnesium Aluminate Spinels”, Applied Catalysis A: General, 273, 75–82 (2004).
[87] J. X. Wang, Y. Liu, T. X. Cheng, W. X. Li, Y. L. Bi, K. J. Zhen, “Methane Reforming with Carbon Dioxide to Synthesis Gas over Co-doped Ni-based Magnetoplumbite Catalysts”, Applied Catalysis A: General, 250, 13–23 (2003).
[88] L. M. Zhou, B. Xue, U. Kogelschatz, B. Eliasson, “Nonequilibrium Plasma Reforming of Greenhouse Gases to Synthesis Gas”, Energy & Fuels, 12, 1191-1199 (1998).
[89] S. S. Kim, H. Lee, B. K. Na, H. K. Song, “Reaction Pathways of Methane Conversion in Dielectric-Barrier Discharge”, Korean Journal of Chemical Engineering, 20, 869-872 (2003).
[90] F. Holzer, U. Roland, F. D. Kopinke, “Combination of Non-Thermal Plasma and Heterogeneous Catalysis for Oxidation of Volatile Organic Compounds, Part 1. Accessibility of the Intra-Particle Volume”, Applied Catalysis B: Environmental, 38, 163–181 (2002).
[91] D. B. Nguyen, W. G. Lee, “Effect of Ambient Condition for Coaxial Dielectric Barrier Discharge Reactor on CO2 Reforming of CH4 to Syngas”, Journal of Industrial and Engineering Chemistry, 20, 972–978 (2014).
[92] X. Tu, J. C. Whitehead, “Plasma-Catalytic Dry Reforming of Methane in an Atmospheric Dielectric Barrier Discharge: Understanding the Synergistic Effect at Low Temperature”, Applied Catalysis B: Environmental, 125, 439–448 (2012).
[93] Q. Wang, B. H. Yan, Y. Jin, Y. Cheng, “Investigation of Dry Reforming of Methane in a Dielectric Barrier Discharge Reactor”, Plasma Chemistry and Plasma Process, 29, 217-228 (2009).
[94] H. K. Song, H. Lee, J. W. Choi, B. K. Na, “Effect of Electrical Pulse Forms on the CO2 Reforming of Methane Using Atmospheric Dielectric Barrier Discharge”, Plasma Chemistry and Plasma Processing, 24, 57-72 (2004).
[95] Y. P. Zhang, Y. Li, Y. Wang, C. J. Liu, B. Eliasson, “Plasma Methane Conversion in the Presence of Carbon Dioxide Using Dielectric-Barrier Discharges”, Fuel Processing Technology, 83, 101–109 (2003).
[96] T. Jiang, M. Li, Y. Li, G. Xu, C. Liu, B. Eliasson, “Comparative Investigation on the Conversion of Greenhouse Gases Using Dielectric Barrier Discharge and Corona Discharge”, Journal of Tianjin University, 35, 19-22 (2003).
[97] Q. Wang, H. Shi, B. Yan, Y. Jin, Y. Cheng, “Steam Enhanced Carbon Dioxide Reforming of Methane in DBD Plasma Reactor”, International Journal of Hydrogen Energy, 36, 8301-8306 (2011).
[98] J. Sentek, K. Krawczyk, M. Młotek, M. Kalczewska, T. Kroker, T. Kolb, A. Schenk, K. Gericke, K. Schmidt-Szałowski, “Plasma-Catalytic Methane Conversion with Carbon Dioxide in Dielectric Barrier Discharges”, Applied Catalysis B: Environmental, 94, 19–26 (2010).
[99] V, Goujard, J. Tatibouët, C. Batiot-Dupeyrat, “Use of a Non-Thermal Plasma for the Production of Synthesis Gas from Biogas”, Applied Catalysis A: General, 353, 228–235 (2009).
[100] H. Long, S. Shang, X. Tao, Y. Yin, X. Dai, “CO2 Reforming of CH4 by Combination of Cold Plasma Jet and Ni/γ-Al2O3 Catalyst”, International Journal of Hydrogen Energy, 33, 5510-5515 (2008).
[101] H. K. Song, J. W. Choi, S. H. Yue, H. Lee, B. K. Na, “Synthesis Gas Production via Dielectric Barrier Discharge over Ni/γ-Al2O3 Catalyst”, Catalysis Today, 89,27–33 (2004).
[102] T. Jiang, Y. Li, C. Liu, G. Xu, B. Eliasson, B. Xue, “Plasma Methane Conversion Using Dielectric-Barrier Discharges with Zeolite A”, Catalysis Today, 72, 229-235 (2002).
[103] J. G. Wang, C. J. Liu, B. Eliasson, “Density Functional Theory Study of Synthesis of Oxygenates and Higher Hydrocarbons from Methane and Carbon Dioxide Using Cold Plasmas”, Energy Fuels, 18, 148–153 (2004).
[104] T. A. Caldwell, H. Le, L. L. Lobban, R. G. Mallinson, “Partial Oxidation of Methane to Form Synthesis Gas in a Tubular AC Plasma Reactor”, Studies in Surface Science and Catalysis, 136, 265–70 (2001).
[105] M. H. Pham, V. Goujard, J. M. Tatibouët, C. Batiot-Dupeyrat, “Activation of Methane and Carbon Dioxide in a Dielectric-Barrier Discharge-Plasma Reactor to Produce Hydrocarbons-Influence of La2O3/γ-Al2O3 Catalyst”, Catalysis Today, 171, 67-71 (2011).
[106] C. J. Liu, R. Mallinson, L. Lobban, “Comparative Investigations on Plasma Catalytic Methane Conversion to Higher Hydrocarbons over Zeolites”, Applied Catalysis A: General, 178, 17–27 (1998).
[107] W. Cho, Y. Baek, S. K. Moon, Y. C. Kim, “Oxidative Coupling of Methane with Microwave and RF Plasma Catalytic Reaction over Transitional Metals Loaded on ZSM-5”, Catalysis Today, 74, 207–23 (2002).
[108] 鍾朝宇,”複合型鈣鈦礦Ba1-xAx(Fe0.5Nb0.5)1-x/4O3 (A=La、Bi)之介電性質研究”,國立成功大學,民94年。
[109] H. Yasuda, T. Hsu, “Plasma Polymerization Investigated by the Comparison of Hydrocarbons and Perfluorocarbons”, Surface Science, 76, 232-241 (1978).
[110] Y. P. Zhang, Y. Li, Y. Wang, C. J. Liu, B. Eliasson, “Plasma Methane Conversion in the Presence of Carbon Dioxide Using Dielectric-Barrier Discharges”, Fuel Processing Technology, 83, 101-109 (2003).
[111] G. Scarduelli, G. Guella, I. Mancini, G. Dilecce, S. D. Benedictis, P. Tosi, Methane Oligomerization in a Dielectric Barrier Discharge at Atmospheric Pressure, Plasma Processes and Polymers, 6,27-33 (2009).
[112] G. Scarduelli, G. Guella, D. Ascenzi, P. Tosi, Synthesis of Liquid Organic Compounds from CH4 and CO2 in a Dielectric Barrier Discharge Operating at Atmospheric Pressure, Plasma Processes and Polymers, 8, 25-31 (2011).
指導教授 張木彬(Moo-bene Chang) 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明