博碩士論文 101326011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:44.212.99.248
姓名 林宣宏(Syuan-Hong Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用MnOx-CeO2/TiO2觸媒同時去除煙道氣中NO、汞及戴奧辛之研究
(Application of MnOx-CeO2/TiO2 for simultaneously removing NO、Mercury and PCDD/Fs in flue gas)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 透過單一空氣污染防制設備達到多重污染物控制,可降低投資及運轉成本並減少占地面積,故近年來日受重視。選擇性觸媒還原(SCR)程序主要應用於NOx之排放減量,文獻指出目前觸媒技術也應用於戴奧辛之去除及元素汞之轉化。本研究利用不同條件製備MnOx-CeO2/TiO2觸媒以同時轉化NO、戴奧辛及汞,期望發展在較低操作溫度(<250oC)下能順利進行SCR反應之觸媒,獲取較佳之觸媒製備條件,並提高SCR技術之商業價值並降低操作成本。研究結果指出在NO去除方面,系統之操作條件為500 ppm NO、等量之NH3及氧含量10%,通過觸媒床總流量為2 lpm,改變觸媒配比、空間流速、操作溫度及鍛燒溫度皆會影響NO之去除效率,以鍛燒溫度400oC製備之Mn0.4-Ce0.13/Ti1-400oC為觸媒,當操作溫度為200oC,空間流速分別為20000 h-1、50000 h-1及80000 h-1時,NO之去除效率分別為100%、97.92%及82.73%。操作溫度由200oC上升至300oC時,開始有NO2之生成,並進一步發現隨NO2生成量增加,NOx之去除效率隨之下降。提高鍛燒溫度會造成觸媒燒結現象(sintering),使得小晶粒聚集成大晶粒,降低觸媒活性。在戴奧辛去除方面,戴奧辛去除效率隨著操作溫度的升高而呈現先下降後上升的趨勢,150oC、200oC及250oC之去除效率分別為98.3%、94.7%及99.4%,且破壞效率於操作溫度200oC顯著提升至91.8%,而吸附效率則明顯下降為2.9%。Mn0.4-Ce0.13/Ti1-400觸媒於200oC下對PCDD之去除效率達95.5%,對PCDF之去除效率為94.8%。在元素汞轉化測試方面,在150oC即有良好之轉化效率,並隨溫度上升(150、200及250oC)而略微增加,分別達87.5%、88.9%及89.1%。本研究成果指出在操作溫度200oC時,觸媒對NO、戴奧辛及元素汞有良好之去除或轉化效率。
摘要(英) Simultaneous control of multiple pollutants with a single air pollution control process not only reduces the capital and operating costs but also decreases the floor space. This concept has received much attention recently. Selective catalytic reduction (SCR) process is mainly used in reducing NOx emission, literature indicates that the current SCR catalyst technology is also effective in removing dioxins and oxidizing elemental mercury. This study investigates the effectiveness of MnOx-CeO2/TiO2 catalysts prepared with different conditions for converting three pollutants including NO, dioxin and Hg in gas streams. The objective is to develop the innovative SCR catalysts which can be operated at a lower temperature (<250oC) for high removal efficiency. The experimental results indicate that the NO conversion efficiency achieved with Mn0.4-Ce0.13/Ti1-400 catalyst reaches 97.9% when operated at 200oC. The results also show that NO2 was significantly formed as the operating temperature increased from 200oC to 300oC, and the increased NO2 generation will reduce NOx removal efficiency. The PCDD/F removal efficiencies achieved at 150oC, 200oC and 250oC are 98.3%, 94.7% and 99.4%, respectively. The PCDD/F destruction efficiency achieved with Mn0.4-Ce0.13/Ti1-400 catalyst reach 91.8% and the PCDD/F adsorption efficiency decreased to 2.9% as the temperature was controlled at 200oC. Experimental results also indicate that the Hg0 conversion achieved with Mn0.4-Ce0.13/Ti1-400 catalyst at 150oC, 200oC and 250oC reach 87.5%, 88.9% and 89.1%, respectively. The results indicate the Mn0.4-Ce0.13/Ti1-400 catalyst can be operated at 200oC for effective removal or conversion of dioxin, NO and mercury from gas streams simultaneously.
關鍵字(中) ★ 汞
★ 戴奧辛
★ NOx
★ 選擇性觸媒還原
★ 多重污染物控制
關鍵字(英) ★ NO
★ Dioxin
★ Mercury
★ SCR
★ multi-pollutant emission control
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與範疇 2
第二章 文獻回顧 3
2.1 戴奧辛之基本特性 3
2.1.1 戴奧辛類化合物之結構及物化特性 3
2.1.2 戴奧辛類化合物之毒性當量 6
2.1.3 戴奧辛生成機制 6
2.2 戴奧辛控制技術 10
2.3 氮氧化物介紹 13
2.3.1 NOx基本特性 15
2.3.2 NOx生成機制與排放源 17
2.4 NOx控制技術 19
2.5 傳統NH3-SCR技術與低溫NH3-SCR技術 22
2.6 低溫SCR觸媒研究概況 23
2.7 汞之物化特性介紹 24
2.8 含汞污染物之控制技術 29
2.8.1 傳統含汞污染物防治技術 29
2.8.2 應用SCR設備對元素汞氧化之可行性 31
2.9 觸媒催化之原理與反應機制 31
第三章 研究方法 34
3.1 研究流程設計 34
3.2 採樣程序 35
3.2.1 採樣對象 35
3.2.2 煙道採樣程序 35
3.2.3 樣品取樣程序 35
3.2.4 樣品瓶清洗程序 35
3.3 實驗設備及材料 38
3.3.1 實驗藥品 38
3.3.2 實驗溶劑 39
3.3.3 實驗材料 39
3.3.4 實驗設備 41
3.4 戴奧辛分析方法 41
3.4.1 樣品前處理 41
3.4.2 PCDD/Fs分析儀器條件設定 44
3.5 NOx分析方法 49
3.6 Hg0分析方法 50
3.7 實驗設計方法 50
3.7.1 觸媒製備 50
3.7.2 實驗模組 50
3.8 其他儀器原理 54
3.8.1 掃描式電子顯微鏡 (SEM) 54
3.8.2 能量分散光譜儀 (EDS) 55
3.8.3 X光繞射分析儀 (XRD) 55
3.8.4 BET比表面積分析儀 56
第四章 結果與討論 59
4.1 觸媒之基本物化特性分析 (N2 adsorption-desorption) 59
4.2 NOx去除之探討 61
4.2.1 不同觸媒配比對NO轉化之影響 63
4.2.2 空間流速對NO轉化之影響 64
4.2.3 鍛燒溫度對NO轉化之影響 65
4.2.4 操作溫度對NOx去除之影響 66
4.3 戴奧辛去除之探討 68
4.3.1 操作溫度對戴奧辛去除之影響 69
4.3.2 鍛燒溫度製備之觸媒對戴奧辛去除之影響 70
4.3.3 各戴奧辛物種之去除效率 71
4.4 元素汞轉化之探討 75
第五章 結論與建議 77
5.1 結論 77
5.2 建議 77
參考文獻 79
參考文獻 Altwicker, E. R., “Formation of Precursors to Chlorinated Dioxin/furans under
Heterogeneous Conditions”, Combustion Science & Technology, Vol.88,
pp. 349-368 (1993).
Babushok, V. I. and Tsang, W., “Gas-Phase Mechanism for Dioxin
Formation”, Chemosphere, Vol.51, pp 1023-1029 (2003).
Ballschmiter, K., W. Zoller, C. Scholtz and A. Nottrodt, “Destruction of PCDD
and PCDF in Bleached Pulp by Chlorine Dioxide Treatment”,
Chemosphere, Vol. 12, pp. 585-597 (1983).
Beer, J. M. and Martin, G. B., “Application of Advanced Technology for NO
Control: Alternate Fuels and Fluidized Bed Coal Combustion”, AIChE
Symposium Series, Vol. 74, pp. 93-114 (1978).
Bosch H and Janssen F., “De-NOx Catalyst Review”, Catalyst Today, Vol. 2, pp.
369-532 (1988).
Chi, K. H., Chang, S. H. and Chang, M. B., “Characteristics of PCDD/Fs
Distributions in Vapor and Solid Phases and Emissions from the Waelz
Process”, Environmental Science & Technology, Vol.40, pp. 1770–1775
(2006).
Chi, K. H., Chang, S. H. and Chang, M. B., “Reduction of Dioxin-like
Compound Emissions from a Waelz Plant with Adsorbent Injection and a
Dual Baghouse Filter System”, Environmental Science & Technology,
Vol.42, pp. 2111–2117 (2008).
Devahasdin, S., Fan, C., Jr., Li, K., Chen, D. H., “TiO2 Photocatalytic
Oxidation of Nitric Oxide: Transient Behavior and Reaction Kinetics”,
Journal of Photochemistry and Photobiology A: Chemistry, Vol.156, pp. 161
-170 (2003).
Dickson, L. C., Lenoir, D. and Hutzinger, O., “Surface-Catalyzed Formation of
Chlorinated Dibenzodioxins and Dibenzofurans during Incineration”,
Chemosphere, Vol.19, pp. 277-282 (1989).
Dickson, L. C., Lenoir, D., Hutzinger, O., “Quantitative Comparison of de
Novo and Formation of Polychlorinated Dibenzo-p-dioxins under
Simulated Municipal Solid Waste Incinerator Postcombustion Conditions”,
Environmental Science & Technology, Vol.26, pp. 1822-1828 (1992).
Fenimore, C. P. and Moore, J., “Quenched Carbon Monoxide in Fuel-Lean
Flame Gas”, Combustion and Flame, Vol.22, pp. 343-351 (1974).
Froese, K. L. and Hutzinger, O., “Polychlorinated Benzene, Phenol, Dibenzo-
P-dioxin, and Dibenzofuran in Heterogeneous Combustion Reaction of
acetylene”, Environmental Science and Technology, Vol.30, pp. 998-
1008(1996).
Furusawa, T., Honda, T., Takano, J. and Kunii, D., “Abatement of Nitric Oxide
Emission in Fluidized Bed Combustion of Coal”, Chemical Engineering of
Japan, Vol. 11, pp. 377-383 (1978).
Griffin, R.D., “A New Theory of Dioxin Formation in Municipal Solid Waste
Combustion”, Chemosphere, Vol.15, pp. 1987-1990 (1986).
Gullett, B. K., Bruce, K. R., Beach, O.L., “Effect of Sulfur Dioxide on the
Formation Mechanism of Polychlorinated Dibenzodioxin and
Dibenzofuran Municipal Waste Combustors”, Environmental Science &
Technology, Vol.26, pp. 1938-1943 (1992).
Hagenmaier, H., Jraft, M., Brunner, H., Haag, R., “Catalytic Effect of Fly Ash
from Waste Incineration Facilities on the Formation and Decomposition of
Polychlorinated Dibenzo-p-dioxions and Polychlorinated Dibenzofurans”,
Environmental Science & Technology, Vol.21, pp. 1080-1084 (1987).
Harrison, R. M., Rapsomanikis, S., “Environmental analysis using chromatography
interfaced with atomic spectroscopy”, Ellis Horwood Chichester, England,
(1989).
Hong, S. C., Lee, S. M., Park, K. H., MnOx/CeO2-TiO2 Mixed Oxide Catalysts
for the Selective Catalytic Reduction of NO with NH3 at Low
Temperature”, Chemical Engineering Journal, Vol.195, pp. 323-331
(2012).
Houser, T. J., M. E. Mcarville and Gu. Z. Ying, “Nitric-Oxide Formation from
Fuel Nitrogen Model-Compound”, Fuel, Vol.67, pp. 642-650 (1988).
Kamata, H., Ueno, Shun-ichiro, Naito, T., Yamaguchi, A. and Ito, S., “Mercury
Oxidation by Hydrochloric Acid over a VOx/TiO2 Catalyst”, Catalysis
Communications, pp. 2441–2444 (2008).
Kamata, H., Ueno, Shun-ichiro, Sato, N. and Naito, T., “Mercury Oxidation by
Hydrochloric Acid over TiO2 Supported Metal Oxide Catalysts in Coal
Combustion Flue Gas”, Fuel Processing Technology, Vol. 90, pp. 947-951
(2009).
Kapteijn, F., Singoredjo, L , Nico J. J. Dekker, Jacob A. Moulijn, “Kinetics of
the Selective Catalytic Reduction of NO with NH3 over Mn2O3-
WO3/γ-alumina”, Industrial & Engineering Chemistry Research,
Vol. 32, pp. 445-452 (2009).
Kellie, S., Duan, Y., Cao, Y., Chu, P., Mehta, A., Carty, R., Liu, K., Pan, W. P.
and Riley, J. T., “Mercury Emissions from a 100 MW Wall fired Boiler as
Measured by Memicontinuous Mercury Monitor and Ontario Hydro
Method”, Fuel Processing Technology, Vol.85, pp. 487-499 (2004).
Koebel, M., Madia, G., Elsener, M., “Selective Catalytic Reduction of NO and
NO2 at Low Temperature”, Catalysis Today, Vol.73, pp. 239-247 (2002).
Komatsu, T., Nunokawa, M., Moon, I.S., Takahara, T., Namba, S., Yashima, T.,
“Kinetic Studies of Reduction of Nitric Oxide with Ammonia on Cu2+-
Exchanged Zeolites”, Journal of Catalysis, Vol.148, pp. 427-437 (1994).
Lange, N. A., “Handbook of Chemistry”, McGraw–Hill, New York,
pp. 288-290 (1976).
Lim, K. J., “Environmental Assessment of Utility Boiler Combustion
Modification NOx Controls”, Vol.1 Technical Results, EPA-600/7-80-075a
(1980).
Liu, Y., Wang, H. and Wu, Z., “Catalytic Oxidation of Gas-phase Mercury over
Co/TiO2 Catalysts Prepared by Sol-gel Mothed”, Catalysis
Communications, pp. 1291-1294 (2011).
Lutter, R. and Irwin, E., “Mercury in the Environment: A Volatile Problem”,
Environment, Vol.44, pp. 24-40 (2002).
McKay, G., “Dioxin Characterisation Formation and Minimisation during
Municipal Solid Waste (MSW) Incineration: Review”, Chemical
Engineering Journal, Vol.86, pp. 343-368 (2002).
Miller, G. T., Jr., “Living in the Environment. An Introduction to
Environmental Science”, 7th ed., California, Wadsworth, pp. 705 (1992).
Milligan, M. S. and Altwicker, E., “Formation of Dioxins: Competing Rates
between Chemical Similar Precursors and De Novo Reaction”,
Environmental Science & Technology, Vol.27, pp. 1595-1601 (1993).
Ogawa, H., Orita, N., Horaguchi, M., Suzuki, T., Okada, M., Yasuda, S.,
“Dioxin Reduction by Sulfur Component Addition”, Chemosphere, Vol.32,
pp. 151-157 (1996).
Pefia, D.A., Uphade, B.S., Smirniotis, P.G., “TiO2-supported Metal Oxide
Catalysts for Low-temperature Selective Catalytic Reduction of NO with
NH3: I. Evaluation and Characterization of First Row Transition Metals”,
Journal of Catalysis, Vol.221, pp. 421-431 (2004).
Qi, G., Yang, R. T., Chang, R., “MnOx-CeO2 Mixed Oxides Prepared by
Co-precipitation for Selective Catalytic Reduction of NO with NH3 at Low
Temperatures”, Applied Catalysis B: Environmental, Vol.51, pp. 93-106
(2004).
Richardson, R., “NOx Scrubbing Technology Breakthrough”, NASF Surface
Technology White Papers, Vol.76, pp. 1-7 (2014).
Schroeder, W. H. and Munthe, J., “Atmospheric Mercury - An Overview”,
Atmospheric Environment, Vol.32, pp. 809-822 (1998).
Schuster, E., “The Behavior of Mercury in the Soil with Special Emphasis on
Complexation and Adsorption Processes-a Review of the Literature”,
Water, Air and Soil Pollution, Vol.56, pp. 667-680 (1991).
Shaub, W. M. and Tsang, W., “Dioxin Formation in Incinerators”,
Environmental Science & Technology, Vol.17, pp. 721-730 (1983).
Shaw, J. T., “Emissions of Nitrogen Oxides in Fluidized-bed Combustion and
Applications”, Applied Science Publishers, London and New York, Chap.
6, pp.227-260 (1983).
Sjovall, H., Olsson, L., Fridell, E., Blint, R. J., “Selective Catalytic Reduction
of NOx with NH3 over Cu-ZSM-5 - The Effect of Changing the Gas
Composition”, Applied Catalysis B: Environmental, Vol.64, pp. 180-188
(2006).
Stieglitz, L. and Vogg, H., “On Formation Conditions of PCDD PCDF in Fly-
ash from Municipal Waste Incinerators”, Chemosphere, Vol.16, pp. 1917-
1922 (1987).
Sun, R. D., Irie, H., Nishikawa, T., Nakajima, A., Watanabe, T., Hashimoto, K.,
“Suppressing Effect of CaCO3 on the Dioxins Emission from Poly Vinyl
Chloride (PVC) Incineration”, Polymer Degradation and Stability, Vol.79,
pp. 253-256 (2003).
Tae S. P., Soon K. J., Sung H. H., “Selective Catalytic Reduction of Nitrogen
Oxides with NH3 over Natural Manganese Ore at Low Temperature”,
Industrial & Engineering Chemistry Research, Vol. 40, pp. 4491-4495
(2001).
Weber, R., Sakurai, T., and Hagenmaier, H., “Low Temperature Decomposition
of PCDD/PCDF, Chlorobenzenes and PAHs by TiO2-based V2O5-WO3
Catalysts”, Applied Catalysis B: Environmental, Vol.20, pp. 249-256
(1999).
Wu, C. Y., Li, H., Li, Y., Zhang, J., “Superior Activity of MnOx-CeO2/TiO2
Catalytic Oxidation of Elemental Mercury at Low Flue Gas
Temperatures”, Applied Catalysis B: Environmental, Vol.111, pp. 381-388
(2012).
吳榮宗,工業觸媒概論,國興出版社,1989。
王仁澤,環境與工業毒物學,高立圖書有限公司,1993。
孫瑞遠,蜂巢式氧化銅觸媒對氮氧化物還原反應之研究,國立成功大學航太
所碩士,2007。
楊文毅,鈀觸媒氧化焚化廢氣中有機物之研究,國立中興大學環工所碩
士論文,2000。
吳俊欣,都市垃圾焚化爐排氣中含汞污染物之採樣與分析暨廢輪胎熱裂
解製備粉狀活性碳對氯化汞蒸氣之吸附效能測試,國立中山大學環
工所碩士論文,2000。
張君正、張木彬,氮氧化物生成機制與控制技術之探討,工業污染防
治,第50期,1994。
竹內浩士、指宿堯嗣,光觸媒商業最前線,全華科技圖書股份有限公
司, 2005。
指導教授 張木彬(Moo-Been Chang) 審核日期 2014-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明