博碩士論文 101326012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.144.16.254
姓名 林子皓(Zi-Hao Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用與比較靜電式氣液介面暴露系統與沉浸式暴露法於奈米銀毒性測試結果
(Evaluation and comparison of ESP-ALI exposure system and submerged method for AgNPs toxicity test)
相關論文
★ 熱昇華廢棄相紙資源化研究★ 地勤公司從業人員搬運作業肌肉骨骼傷害風險評估
★ 高階製程安全管理架構★ In Situ Measurements of CCN Activity and Aerosol Optical Properties at Biomass Burning Source and Receptor Regions
★ 以COMSOL Multiphysics模擬氣懸微粒於靜電集塵式細胞株暴露系統中之運動軌跡★ 社區改造碳排放及減量計算分析與探討
★ 中小型燃煤鍋爐粒狀污染物、硫氧化物及氮氧化物經串聯控制設備後之去除效率探討研究-以桃園市為例★ 整合填充型水洗技術於潔淨室外氣空調箱 以去除酸鹼氣態分子污染物之研究
★ 固定污染源揮發性有機物(VOCs)自廠係數建置-以某矽晶圓製造廠為例★ 高層建築大樓室內空氣品質之探討-以某企業大樓為例
★ 公路交通運輸對於山谷地形郊區空氣品質之影響★ 以沸石轉輪焚化系統處理變壓器塗裝作業VOCs效率探討
★ 以數值模擬分析狹縫型虛擬衝擊器之效能★ 研究微粒帶電性質與呼吸毒性之關聯: 以小鼠暴露奈米黑碳微粒實驗為例
★ 靜電集塵式ALI暴露系統之設計、開發與評估★ 以石英晶體微天平量測細懸浮微粒PM2.5質量濃度之可行性探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 奈米科技是近年來最炙手可熱的產業之一,越來越多的奈米產品被應用在工業與日常生活中。然而,隨著奈米科技的蓬勃發展,奈米材料的潛在毒性也逐漸受到人們的重視。許多研究人員投身其中,致力於了解奈米物質的傳輸與毒性機制,期望能提供政府機構未來制定相關法規的參考資料。過去奈米物質毒性實驗中大多採用沉浸式in vitro的方式,此方法雖然操作較為簡單且成本較低,但近年來越來越多研究人員對此方法提出質疑,認為應用此一方法所進行的生物毒性實驗無法完全代表暴露物質原本的毒性強弱。氣液介面式暴露技術能克服傳統沉浸式暴露的缺點並可模擬真實情況中微粒與人類呼吸道的暴露行為,故許多學者開始採用此一方式進行生物毒性實驗,但氣液介面暴露技術仍然存在部分尚未釐清的疑慮,本研究目標即為觀察氣相奈米銀微粒沉浸於液相之後其物化特性的變化程度,並實際建立一套靜電式氣液介面(ESP-ALI)暴露系統進行生物毒性實驗,再與沉浸式實驗結果相比及討論兩種實驗方法的差異性。
氣相奈米銀微粒沉浸於兩種不同溶液(DI水與DMEM-H medium)後,其粒徑大小皆有明顯上升的趨勢,顯示氣相奈米銀微粒沉浸於液體之後會發生劇烈的聚集行為。界達電位方面,沉浸於DI水的奈米銀微粒維持在-20至-30 mV,DMEM-H medium的奈米銀微粒則維持在-5至-15 mV,細胞介達電位多為負值,奈米銀微粒與生物接觸機率降低。銀離子釋出實驗方面,暴露四小時後,DI水中銀離子濃度可達0.8至1.5 ppb,DMEM-H medium中銀離子濃度為3.5至5.1 ppb,此一範圍的銀離子濃度足以造成部分生物死亡,此外,DMEM-H medium中的無機鹽類會與銀銀子結合,故DMEM-H medium的銀離子濃度會隨存放時間增長而下降。
實際應用ESP-ALI暴露系統於生物實驗方面,本研究所建立的暴露系統於暴露時間三小時以內可使細胞活性維持在80%以上。實驗結果顯示本研究所觀測的幾項生物指標(死亡率、細胞自我吞噬與細胞凋亡),ESP-ALI暴露系統皆僅需低於沉浸式實驗的劑量即可誘發相近程度的毒性反應,表示沉浸式實驗確實存在劑量高估的疑慮。細胞壞死方面,應用沉浸式暴露法僅需更低劑量便可誘發細胞產生細胞壞死,顯示不同暴露方式會導致受測細胞死亡機制不同。
本研究實際觀測了氣相奈米銀微粒沉浸於液體之後的物化特性變化,並比較兩種不同暴露方式(ESP-ALI與沉浸式)實驗結果的劑量差異,未來將持續改進ESP-ALI暴露系統效能與穩定性,期望提供更為準確的生物毒性實驗方法。
摘要(英) Traditional submerged exposure method has some drawbacks and limits which may influence test results. An air-liquid-interface (ALI) exposure method can conquer those disadvantages of submerged exposure method, so more and more researchers apply this method to do nanomaterials toxicity test. However, the physical and chemical properties of test materials which may change in the ‘exposure processes’ is rarely be evaluated by ALI exposure method. In addition, the broad-spectrum antimicrobial properties of silver nanoparticles (AgNPs) make its use in numerous household products, water and air purification. Researchers also have been investigating the potential toxicity of AgNPs. This research investigated the physical and chemical properties of air phase silver nanoparticles (AgNPs) when they immersed into different liquid, and established an ESP-ALI exposure system to do silver nanoparticles biological toxicity test, and then compared these results with traditional submerged exposure method.
After immersed into DI water, particle size of liquid phase AgNPs would become larger than air phase AgNPs. It presented AgNPs would aggregate dramatically when air phase AgNPs immersed into liquids. Zeta potential of liquid phase AgNPs would approach to -38 mV, and then increase with storage time. In brief, particle size becoming larger and zeta potential showed a negative value implied that its toxicity would decrease when air phase AgNPs immersed into DI water. In terms of water quality, pH and dissolved oxygen in AgNPs suspension solution maintained a constant value with storage time increasing. Thus it implied that air phase AgNPs immersed into DI water would not affect pH and dissolved oxygen of DI water. Conductivity increased with increasing storage time perhaps due to the Ag+ ion release. Furthermore, the released Ag+ concentrations increased almost linearly within 4 hours. After exposure at 4-hour point, Ag+ concentrations of AgNPs suspension would approach to 0.8~1.5 ppb, this concentration range may make some organisms dead.
Furthermore, after immersed into DMEM-H medium, liquid phase AgNPs would aggregate significantly, and particle size can be even larger than one immersed into DI water. This is because under high ionic strength condition, the attractive force between particles became dominant over the repulsive force. Zeta potential of liquid phase AgNPs would approach to -5 mV initially, and then decrease with storage time increasing. In terms of water quality, pH and dissolved oxygen would not change with storage time increasing, and however, conductivity had a trend of rise first and then fall. It may be because Ag+ can bind with Cl- and decrease the ionic strength of sample. Released Ag+ concentrations also had a similar trend with conductivity of AgNPs suspension solution.
Our ESP-ALI exposure system can make cell viability above 80% when exposure time shorter than 3 hours. It presented our ESP-ALI exposure system can use in short exposure experiments. Compared with submerged exposure method, ESP-ALI exposure system only needed lower AgNPs dose to make biomarkers easily detected (cell viability, cell autophagy and apoptosis), and it implied submerged exposure method had a disadvantage of overestimated dose. However, compared with ESP-ALI exposure system, submerged exposure method needed lower dose to induce necrosis, and it implied different stresses on the test cell via different exposure methods might cause different cell death mechanisms.
關鍵字(中) ★ 奈米銀微粒
★ 奈米毒理學
★ ESP-ALI暴露系統
關鍵字(英)
論文目次 摘要……… I
Abstract….. III
致謝……… V
目錄……… VI
圖目錄…… .VIII
表目錄........ …...X
符號說明… XI
一、 前言 1
1-1 研究緣起 1
1-2 文獻回顧 5
1-2-1 奈米銀對於細胞的毒性機制 5
1-3 研究目的 16
二、 研究方法 17
2-1 奈米銀物化特性變化實驗流程 17
2-2 ESP-ALI系統應用於生物暴露實驗流程 23
2-2-1 ESP-ALI設計與操作條件 23
2-2-2 氣膠生成與暴露系統 24
2-2-3 細胞培養與生物毒性暴露實驗 26
2-2-4 沉浸式in vitro生物暴露實驗 32
三、 結果與討論 33
3-1 氣相奈米銀微粒沉浸於液相中物化特性的改變 33
3-1-1 奈米銀氣膠合成 33
3-1-2 溶液中奈米銀微粒物化特性變化(以DI水做為收集溶液) 42
3-1-3 溶液中奈米銀微粒物化特性變化(以DMEM-H medium做為收集溶液)…… 52
3-2 ESP-ALI生物暴露實驗結果 60
3-2-1 ESP-ALI模組測試結果 60
3-2-2 實際應用ESP-ALI於生物暴露實驗結果 65
四、 結論 85
參考文獻…. 90
附錄……... 99
A. 90 plus particle size analyzer 測試 99
B. DI水靜置4小時後,水質條件隨時間的變化 100
C. DMEM-H medium靜置4小時後,水質條件隨時間的變化 101
D. 細胞自我吞噬流式細胞儀結果(ESP-ALI,18小時) 102
E. 細胞凋亡與壞死流式細胞儀結果(ESP-ALI,18小時) 104
F. 細胞氧化壓力生成流式細胞儀結果(ESP-ALI) 107
G. 細胞自我吞噬流式細胞儀結果(傳統沉浸式,18小時) 108
H. 細胞凋亡與壞死流式細胞儀結果(傳統沉浸式,18小時) 111
委員意見回覆 114


參考文獻 1. Fabrega, J., et al., Silver nanoparticles: Behaviour and effects in the aquatic environment. Environment International, 2011. 37(2): p. 517-531.
2. Baun, A., et al., Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing. Ecotoxicology, 2008. 17(5): p. 387-395.
3. Dreher, K.L., Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles. Toxicological Sciences, 2004. 77(1): p. 3-5.
4. Stebounova, L.V., et al., Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol, 2011. 8(1): p. 5.
5. Thomas, K., et al., Research strategies for safety evaluation of nanomaterials, part VIII: International efforts to develop risk-based safety evaluations for nanomaterials. Toxicological Sciences, 2006. 92(1): p. 23-32.
6. Michelson, E.S., “The train has left the station”: The project on emerging nanotechnologies and the shaping of nanotechnology policy in the United States. Review of Policy Research, 2013. 30(5): p. 464-487.
7. Jane, Q.-I., Nano-safety studies urged in China. Nature, 2012. 489.
8. Takemura, M., Japan′s engagement in health, environmental and societal aspects of nanotechnology. Journal of Cleaner Production, 2008. 16(8–9): p. 1003-1005.
9. Tsing-Tang, S., P. En-yu, and T. Huan-Chi, Nanorisk governance in Taiwan: Studying potential impacts on the environment, health, and safety. Nanotechnology Magazine, IEEE, 2012. 6(2): p. 15-19.
10. Volckens, J., et al., Direct particle-to-cell deposition of coarse ambient particulate matter increases the production of inflammatory mediators from cultured human airway epithelial cells. Environmental Science & Technology, 2009. 43(12): p. 4595-4599.
11. Paur, H.-R., et al., In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. Journal of Aerosol Science, 2011. 42(10): p. 668-692.
12. Beer, C., et al., Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicology Letters, 2012. 208(3): p. 286-292.
13. Chithrani, B.D., A.A. Ghazani, and W.C.W. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 2006. 6: p. 662-668.
14. Elbadawy, A.M., et al., Surface charge-dependent toxicity of silver nanoparticles. Environmental Science & Technology, 2011. 45: p. 283-287.
15. Newton, K.M., et al., Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. Environmental Toxicology and Chemistry, 2013.
16. Teeguarden, J.G., et al., Particokinetics In Vitro: Dosimetry Considerations for In Vitro Nanoparticle Toxicity Assessments. Toxicological Sciences, 2007. 95(2): p. 300-312.
17. Lenz, A.G., et al., A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol, 2009. 6: p. 32.
18. Rach, J., et al., Direct exposure at the air–liquid interface: evaluation of an in vitro approach for simulating inhalation of airborne substances. Journal of Applied Toxicology, 2014. 34(5): p. 506-515.
19. Aufderheide, M., Direct exposure methods for testing native atmospheres. Experimental and Toxicologic Pathology, 2005. 57, Supplement 1(0): p. 213-226.
20. Pariselli, F., et al., Effects of toluene and benzene air mixtures on human lung cells (A549). Experimental and Toxicologic Pathology, 2009. 61(4): p. 381-386.
21. Deschl, U., J. Vogel, and M. Aufderheide, Development of an in vitro exposure model for investigating the biological effects of therapeutic aerosols on human cells from the respiratory tract. Experimental and Toxicologic Pathology, 2011. 63(6): p. 593-598.
22. Stevens, J.P., et al., A new method for quantifiable and controlled dosage of particulate matter for in vitro studies: The electrostatic particulate dosage and exposure system (EPDExS). Toxicology in Vitro, 2008. 22(7): p. 1768-1774.
23. Savi, M., et al., A novel exposure system for the efficient and controlled deposition of aerosol particles onto cell cultures. Environmental Science & Technology, 2008. 42(15): p. 5667-5674.
24. Sun, W.-Y., et al., Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical Communications, 2005(40): p. 5059-5061.
25. Wong, K.K.Y., et al., Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem, 2009. 4(7): p. 1129-1135.
26. Westerhoff, P. and T.M. Benn, Nanoparticle silver released into water from commercially available sock fabrics. Environmental science & technology, 2008. 42: p. 7.
27. Cleveland, D., et al., Pilot estuarine mesocosm study on the environmental fate of Silver nanomaterials leached from consumer products. Science of The Total Environment, 2012. 421–422(0): p. 267-272.
28. Laban, G., et al., The effects of silver nanoparticles on Fathead minnow (Pimephales promelas) embryos. Ecotoxicology, 2010: p. 185-195.
29. Hoheisel, S.M., S. Diamond, and D. Mount, Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas. Environmental Toxicology and Chemistry, 2012. 31(11): p. 2557-2563.
30. Chae, Y.J., et al., Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquatic Toxicology, 2009. 94(4): p. 320-327.
31. Browning, L.M., et al., Silver Nanoparticles Incite Size- and Dose-Dependent Developmental Phenotypes and Nanotoxicity in Zebrafish Embryos. Chemical Research in Toxicology, 2013. 26(10): p. 1503-1513.
32. Wu, Y., et al., Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicology, 2010. 100(2): p. 160-167.
33. Kawata, K., M. Osawa, and S. Okabe, In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environmental Science & Technology, 2009. 43(15): p. 6046-6051.
34. Sotiriou, G.A. and S.E. Pratsinis, Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Current Opinion in Chemical Engineering, 2011. 1(1): p. 3-10.
35. Samberg, M.E., P.E. Orndorff, and N.A. Monteiro-Riviere, Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology, 2010. 5(2): p. 244-253.
36. Panáček, A., et al., Silver colloid nanoparticles:  Synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 2006. 110(33): p. 16248-16253.
37. Feng, Q.L., et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 2000. 52(4): p. 662-668.
38. Kim, J.Y., et al., Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Research, 2008. 42(1–2): p. 356-362.
39. Li, Q., et al., Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 2008. 42(18): p. 4591-4602.
40. Sondi, I. and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004. 275(1): p. 177-182.
41. AshaRani, P.V., et al., Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2008. 3(2): p. 279-290.
42. Kittler, S., et al., Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater, 2010. 22: p. 4548 - 4554.
43. Choi, O., et al., Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Research, 2009. 43(7): p. 1879-1886.
44. Zhang, W., et al., Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environmental Science & Technology, 2011. 45(10): p. 4422-4428.
45. Liu, J. and R.H. Hurt, Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environmental Science & Technology, 2010. 44(6): p. 2169-2175.
46. Xiu, Z.-M., J. Ma, and P.J.J. Alvarez, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environmental Science & Technology, 2011. 45(20): p. 9003-9008.
47. Asati, A., et al., Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano, 2010. 4(9): p. 5321-5331.
48. Scown, T.M., et al., Effects of aqueous exposure to silver nanoparticles of different sizes in Rainbow trout. Toxicological Science, 2010. 115: p. 14.
49. Musante, C. and J.C. White, Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk-size particles. Environmental Toxicology, 2012. 27(9): p. 510-517.
50. Verhaar, H.J.M., et al., An LC50 vs time model for the aquatic toxicity of reactive and receptor-mediated compounds. Consequences for bioconcentration kinetics and risk assessment. Environmental Science & Technology, 1999. 33(5): p. 758-763.
51. Neely, W.B., An analysis of aquatic toxicity data: Water solubility and acute LC50 fish data. Chemosphere, 1984. 13(7): p. 813-819.
52. Carlson, C., et al., Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. The Journal of Physical Chemistry B, 2008. 112(43): p. 13608-13619.
53. Delgado, A.V., et al., Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 2007. 309(2): p. 194-224.
54. Lee, Y.J., et al., Ion‐release kinetics and ecotoxicity effects of silver nanoparticles. Environmental Toxicology and Chemistry, 2012. 31(1): p. 155-159.
55. Wood, C.M., et al., The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+. Aquatic Toxicology, 1996. 35(2): p. 93-109.
56. Kim, T., et al., Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. Journal of Materials Science: Materials in Medicine, 1998. 9(3): p. 129-134.
57. Chernousova, S. and M. Epple, Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie International Edition, 2013. 52(6): p. 1636-1653.
58. Levard, C., et al., Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environmental Science & Technology, 2013. 47(11): p. 5738-5745.
59. Elihn, K., et al., Cellular dose of partly soluble Cu particle aerosols at the air–liquid interface using an In vitro lung cell exposure system. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2013. 26(2): p. 84-93.
60. Wegner, K., et al., Design of metal nanoparticle synthesis by vapor flow condensation. Chemical Engineering Science, 2002. 57(10): p. 1753-1762.
61. Wang, H. and C. Xie, The effects of oxygen partial pressure on the microstructures and photocatalytic property of ZnO nanoparticles. Physica E: Low-dimensional Systems and Nanostructures, 2008. 40(8): p. 2724-2729.
62. Temuujin, J., et al., Preparation of copper and silicon/copper powders by a gas evaporation-condensation method. Bulletin of Materials Science, 2009. 32(5): p. 543-547.
63. Nakaso, K., et al., Evaluation of the change in the morphology of gold nanoparticles during sintering. Journal of Aerosol Science, 2002. 33(7): p. 1061-1074.
64. Kruis, F.E., H. Fissan, and B. Rellinghaus, Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Materials Science and Engineering: B, 2000. 69–70(0): p. 329-334.
65. Shimada, M., T. Seto, and K. Okuyama, Size change of very fine silver agglomerates by sintering in a heated flow. Joyrnal of Chemical Engineering of Japan, 1994. 27(6): p. 795-802.
66. Cho, K., C. Hogan, Jr., and P. Biswas, Study of the mobility, surface area, and sintering behavior of agglomerates in the transition regime by tandem differential mobility analysis. Journal of Nanoparticle Research, 2007. 9(6): p. 1003-1012.
67. Pyrz, W.D. and D.J. Buttrey, Particle size determination using TEM: A discussion of image acquisition and analysis for the novice microscopist. Langmuir, 2008. 24(20): p. 11350-11360.
68. Kennedy, A.J., et al., Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environmental Science & Technology, 2012. 46(19): p. 10772-10780.
69. Li, X., J. J.Lenhart, and H. W.Walker, Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir, 2011. 28: p. 1095-1104.
70. Glawdel, T. and C. Ren, Zeta potential measurement, in Encyclopedia of Microfluidics and Nanofluidics. 2008, Springer. p. 2199-2207.
71. Eon-Duval, A., et al., Removal of RNA impurities by tangential flow filtration in an RNase-free plasmid DNA purification process. Analytical Biochemistry, 2003. 316(1): p. 66-73.
72. Benner, R., Ultra‐filtration for the concentration of bacteria, viruses, and dissolved organic matter. Marine Particles: Analysis and Characterization, 1991: p. 181-185.
73. Dalwadi, G., H.A.E. Benson, and Y. Chen, Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharmaceutical Research, 2005. 22: p. 2152-2162.
74. Sillanpää, M., et al., High collection efficiency electrostatic precipitator for in vitro cell exposure to concentrated ambient particulate matter (PM). Journal of Aerosol Science, 2008. 39(4): p. 335-347.
75. Larini, A. and V. Bocci, Effects of ozone on isolated peripheral blood mononuclear cells. Toxicology in Vitro, 2005. 19(1): p. 55-61.
76. Rao, M. and K. Davis, The physiology of ozone induced cell death. Planta, 2001. 213(5): p. 682-690.
77. Lippmann, M., Health effects of ozone : a critical review. JAPCA, 1989. 39(5): p. 672-695.
78. Comouth, A., et al., Modeling and measurement of particle deposition for cell exposure at the air–liquid interface. Journal of Aerosol Science, 2013. 63(0): p. 103-114.
79. Ye, X., et al., A multifunctional HTDMA system with a robust temperature control. Advances in Atmospheric Sciences, 2009. 26(6): p. 1235-1240.
80. Day, D.E. and W.C. Malm, Aerosol light scattering measurements as a function of relative humidity: a comparison between measurements made at three different sites. Atmospheric Environment, 2001. 35(30): p. 5169-5176.
81. Zeng, Q., et al., PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Research, 2003. 63(11): p. 2716-2722.
82. Vacher, G., et al., Establishment and first characterization of a sublingual epithelial and immune cell co-culture model. International Journal of Pharmaceutics, 2015. 482(1–2): p. 61-67.
83. Kim, J.S., et al., Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials. Toxicology in Vitro, 2013. 27(1): p. 164-173.
84. Bland, J.S., Oxidants and antioxidants in clinical medicine: Past, present and future potential. Journal of Nutritional and Environmental Medicine, 1995. 5(3): p. 255-280.
85. Sies, H., Oxidative stress: oxidants and antioxidants. Experimental Physiology, 1997. 82(2): p. 291-295.
86. Hensley, K., et al., Reactive oxygen species, cell signaling, and cell injury. Free Radical Biology and Medicine, 2000. 28(10): p. 1456-1462.
87. Glick, D., S. Barth, and K.F. Macleod, Autophagy: cellular and molecular mechanisms. The Journal of pathology, 2010. 221(1): p. 3-12.
88. Dong, Y., et al., Autophagy: definition, molecular machinery, and potential role in myocardial ischemia-reperfusion injury. Journal of Cardiovascular Pharmacology and Therapeutics, 2010.
89. Chargui, A., et al., Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicological Sciences, 2011. 121(1): p. 31-42.
90. Chen, Y. and D.J. Klionsky, The regulation of autophagy – unanswered questions. Journal of Cell Science, 2011. 124(2): p. 161-170.
91. Mizushima, N., Methods for monitoring autophagy. The International Journal of Biochemistry & Cell Biology, 2004. 36(12): p. 2491-2502.
92. Kerscher, L. and S. Nowitzki, Western blot analysis of a lytic process in vitro specific for the red light absorbing form of phytochrome. FEBS Letters, 1982. 146(1): p. 173-176.
93. Trump, B.E., et al., The pathways of cell death: Oncosis, apoptosis, and necrosis. Toxicologic Pathology, 1997. 25(1): p. 82-88.
94. McConkey, D.J., Biochemical determinants of apoptosis and necrosis. Toxicology Letters, 1998. 99(3): p. 157-168.
95. Lin, W., et al., In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 2006. 217(3): p. 252-259.
96. Hussain, S.M., et al., In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro, 2005. 19(7): p. 975-983.
97. Weber, A.P. and S.K. Friedlander, In situ determination of the activation energy for restructuring of nanometer aerosol agglomerates. Journal of Aerosol Science, 1997. 28(2): p. 179-192.
98. Seto, T., M. Shimada, and K. Okuyama, Evaluation of sintering of nanometer-sized titania using aerosol method. Aerosol Science and Technology, 1995. 23(2): p. 183-200.
99. DeCarlo, P.F., et al., Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Science and Technology, 2004. 38(12): p. 1185-1205.
100. Schmidt-Ott, A., New approaches to in situ characterization of ultrafine agglomerates. Journal of Aerosol Science, 1988. 19(5): p. 553-563.
101. Geller, M., S. Biswas, and C. Sioutas, Determination of particle effective density in urban environments with a differential mobility analyzer and aerosol particle mass analyzer. Aerosol Science and Technology, 2006. 40(9): p. 709-723.
102. McMurry, P.H., et al., The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density. Aerosol Science and Technology, 2002. 36(2): p. 227-238.
103. Park, K., et al., Relationship between particle mass and mobility for diesel exhaust particles. Environmental Science & Technology, 2002. 37(3): p. 577-583.
104. Sun, Z., et al., Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. The Journal of Physical Chemistry C, 2008. 112(29): p. 10692-10699.
105. Angel, B.M., et al., The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere, 2013. 93(2): p. 359-365.
106. Greulich, C., et al., Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbeck′s Archives of Surgery, 2009. 394(3): p. 495-502.
107. Greulich, C., et al., The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Advances, 2012. 2(17): p. 6981-6987.
108. Liu, J., et al., Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS). Environmental Science & Technology, 2009. 43(21): p. 8178-8183.
109. Badawy, A.M.E., et al., Impact of environmental conditions (pH, ionic strength, and rlectrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environmental Science & Technology, 2010. 44(4): p. 1260-1266.
110. Liu, W., et al., Environmental and biological influences on the stability of silver nanoparticles. Chinese Science Bulletin, 2011. 56(19): p. 2009-2015.
111. Delay, M., et al., Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength. Journal of Chromatography A, 2011. 1218(27): p. 4206-4212.
112. Huynh, K.A. and K.L. Chen, Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environmental Science & Technology, 2011. 45: p. 5564-5571.
113. Li, X., J.J. Lenhart, and H.W. Walker, Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir, 2010. 26(22): p. 16690-16698.
114. Derjaguin, B. and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Progress in Surface Science, 1993. 43(1–4): p. 30-59.
115. Verwey, E.J.W., Theory of the stability of lyophobic colloids. The Journal of Physical and Colloid Chemistry, 1947. 51(3): p. 631-636.
116. Jiang, J., G.n. Oberdo¨rster, and P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res, 2009. 11: p. 13.
117. Liu, B.Y., Fine particles: Aerosol generation, measurement, sampling, and analysis. 2012: Elsevier.
118. Janic, B., et al., An in vitro cell model system for the study of the effects of ozone and other gaseous agents on phagocytic cells. Journal of Immunological Methods, 2003. 272(1–2): p. 125-134.
119. Asare, N., et al., Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 2012. 291(1–3): p. 65-72.
120. Foldbjerg, R., D. Dang, and H. Autrup, Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives of Toxicology, 2011. 85(7): p. 743-750.
121. Mizushima, N., et al., In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Molecular Biology of the Cell, 2004. 15(3): p. 1101-1111.
122. Barber, R.D., et al., GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiological Genomics, 2005. 21(3): p. 389-395.
123. Stephens, A.S., S.R. Stephens, and N.A. Morrison, Internal control genes for quantitative RT-PCR expression analysis in mouse osteoblasts, osteoclasts and macrophages. BMC Research Notes, 2011. 4: p. 410-410.
124. Zhang, Y., et al., Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomedical Microdevices, 2008. 10(2): p. 321-328.
125. Wilson, W.W., et al., Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. Journal of Microbiological Methods, 2001. 43(3): p. 153-164.
指導教授 蕭大智(Ta-Chih Hsiao) 審核日期 2015-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明