博碩士論文 101326013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.118.137.243
姓名 王偉(Wei Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2015-2016年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估
(Chemical characterization and source apportionment of the fine particulate matter (PM2.5) at Taiwan metropolises during 2015-2016)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 細懸浮微粒(氣動直徑小於或等於2.5 μm粒狀物質, PM2.5)對於空氣品質評估、污染源管制策略制定、健康風險評估、環境變遷有重大的影響。本文為探究台灣都會區PM2.5可能污染源以及污染事件成因,於2015年7月至2016年5月在台灣北(板橋)、中(忠明)、南(小港)部環保署空氣品質監測站,觀測都會區PM2.5質量濃度與化學成分變化,採集PM2.5過程配置三張濾紙,修正採樣過程微粒吸附及揮發作用。對於解析的PM2.5質量濃度與化學成分,本文分別探討其季節變化趨勢,並結合手動採集數據與環保署空氣品質監測數據,探討污染事件成因。此外,透過EC-tracer與質量重組推估原生與二次生成碳成分在PM2.5占比,使用正矩陣因子法(Positive Matrix Factorization, PMF)推估貢獻因子(污染來源),最後使用條件機率函數(Conditional Probability Function, CPF)結合風向資料,推估高貢獻當地污染源來向。
  研究結果顯示北、中、南三個觀測地點PM2.5質量濃度,都以夏季最低,由北至南三個測站最高季節濃度分別發生於春季、秋季、冬季,造成季節差異可歸因於污染事件成因差異,例如:北部春季的境外傳輸、中部秋季受到上風污染區域傳輸與環境擴散不佳、南部冬季環境擴散不佳。觀測地區PM2.5化學成分組成大多以硫酸鹽與修正後有機碳成分為主,然而,當PM2.5濃度大於35 μg m-3時,硝酸根離子明顯有增量趨勢,顯示發生污染事件時,硝酸根離子前驅排放源具有重大影響,因此要降低PM2.5事件發生必須管制硝酸根離子相關前驅排放源。
  透過EC-tracer方法推估原生與二次生成有機碳占比,結果顯示三個測站都是冬季有最高二次生成有機碳占比,分別為49%、48%、60%,這項結果顯示冬季低溫使有機物揮發損失減少以及冬季混合層高度低,環境中前驅物濃度高有利於二次生成反應的進行。質量重組的結果則顯示台灣北、中、南都會區有機物與有機碳間比值分別可使用1.56、1.6、1.66,而且發現比值在高污染時期有明顯提升,顯示高污染時期環境有利於有機物含量提升。
  從金屬元素成分變化發現各觀測地區元素富集因子數值隨污染物濃度升高而提升,顯示污染源主要來自人為活動。當季節改變,風向轉為東北季風時,作為燃煤指標元素的Se在三站都明顯提升,富集因子數值同時驟升,推測受到境外傳輸或是鄰近都會區域傳輸影響。低污染濃度時期,如夏季中部與南部測站燃油指標元素V有明顯占比,並會隨季節逐漸降低,顯示低污染時期本地工業的燃油排放影響十分明顯。
  PMF受體模式推估結合CPF顯示在低污染時期污染貢獻源主要來自本地排放源,高污染時期受到環境擴散不佳或是境外傳輸影響,因此二次污染物占比較大。
摘要(英) Atmospheric suspended fine particles (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm, PM2.5) play an important role in air quality assessment, setting up control strategies for polluting sources, health risk assessment, and environmental change. This study aims to investigate source contributions and causes of polluting events by observing PM2.5 mass and chemical component concentrations at the stations of Taiwan Environmental Protection Administration (TEPA) in the northern (Banqiao), middle (Zhongming), and southern (Xiaogang) parts of Taiwan from July 2015 to May 2016. During the studying period, the deployment of three-filter in series was adopted for PM2.5 collections to correct for the interference of volatilization of semi-volatile species and adsorption of gases from the environment. For the resolved PM2.5 mass and chemical component concentrations, this study investigated their seasonal variation trends and causes of polluting events by combining manual collections with air-quality monitoring data conducted at TEPA stations. In addition, weight percentages of primary and secondary organic carbons in PM2.5 were estimated by EC-tracer and mass reconstruction methods. Contributing factors (i.e., polluting sources) were apportioned by Positive Matrix Factorization (PMF) method and validated by Conditional Probability Function (CPF) with wind direction for high contributing local sources.
  The results show that PM2.5 mass levels were lowest at all sampling sites in summer, and highest at stations in the northern, middle, and southern parts of Taiwan in spring, autumn, and winter, respectively. These seasonal variations can be attributed to causes of polluting events, for examples, transboundary transports in the northern Taiwan in spring, upwind regional transport and bad environmental ventilation in the middle Taiwan in autumn, and bad environmental ventilation in the southern Taiwan in winter. Major PM2.5 chemical components are sulfates and organic carbons in most samples. However, the weight percentages of nitrate ion in PM2.5 were apparently enhanced when PM2.5 concentrations were greater than 35 μg m-3 implying precursor sources of nitrate ion played a significant role. The precursor sources of nitrate ion need to be controlled to reduce PM2.5 polluting events.
  The results of EC-tracer method in estimating weight percentages of primary and secondary organic carbons in PM2.5 show that the weight percentages of secondary organic carbons are highest in winter with 49%, 48%, and 60%, respectively, across all three sites. It indicates low ambient temperature in winter reduces losses of semi-volatile species and lower winter mixing layer in enhancing precursor pollutant concentrations both favor the process of secondary production. The mass closure results show that the multiplying factors of organic matter (OM) to OC in the northern, middle, and southern metropolis are 1.56, 1.6 and 1.66, respectively. In addition, the factor was apparently increased during high polluting period which implied that the content of OM was enhanced.
  The computed values of Enrichment Factor (EF) from the analyzed metal elements across all stations are increased with the rises of pollutant concentrations which reveal that polluting sources mainly contributed from anthropogenic activities. The concentrations of coal burning tracer Se were increased with simultaneous increases of EF values across all three stations when the prevailing wind changed to northeast monsoon during the change of season. The cause was considered to be affected by transboundary or regional transports of nearby metropolis. During low polluting period, the weight percentages of oil combustion element V were enhanced in the middle and southern stations in summer but lowered according to the change of seasons. It indicated oil combustion emissions from local industry were relatively important during low polluting period.
  The source apportionment from PMF coupling with CPF reveals that the emissions from local sources are mainly responsible during low polluting period. In contrast, the weight percentages of secondary pollutants were comparatively higher due to bad environmental ventilation or transboundary transport during high polluting period.
關鍵字(中) ★ 細懸浮微粒(PM2.5)
★ PM2.5化學成分
★ 質量重組
★ 污染源解析
★ EC-tracer
關鍵字(英) ★ Fine particulate matter (PM2.5)
★ PM2.5 chemical components
★ Mass closure
★ PMF source apportionment
★ EC-tracer
論文目次 目錄
摘要 I
Abstract III
致謝 VI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 細懸浮微粒(PM2.5)重要性 4
2.1.1 細懸浮微粒(PM2.5)對於環境的影響 4
2.1.2 細懸浮微粒(PM2.5)對於人體的影響 5
2.2 細懸浮微粒(PM2.5)形成機制 6
2.3 細懸浮微粒(PM2.5)組成成分來源 7
2.3.1 細懸浮微粒水溶性離子來源 7
2.3.2 細懸浮微粒(PM2.5)碳成分來源 7
2.3.3 細懸浮微粒金屬成分來源 9
2.4 台灣都會區細懸浮微粒(PM2.5)特性 13
2.5 質量重組(MASS RECONSTRUCTION)方法與應用 15
2.6 受體模式正矩陣因子法PMF (POSITIVE MATRIX FACTORIZATION)應用 17
第三章 研究方法 19
3.1 研究架構 19
3.2 採樣地點與時間 21
3.2.1 採樣地點概述 22
3.2.2 採樣時間 23
3.3 PM2.5手動採樣儀器 24
3.3.1 R&P 2300 成分濃度採樣儀器 24
3.3.2 BGI PQ 200 PM2.5質量濃度採樣器 26
3.3.3 R&P 2000 PM2.5採樣器採樣原理 27
3.4 PM2.5質量濃度和化學成分分析方法 28
3.4.1 採樣濾紙前處理 28
3.4.2 質量濃度秤重分析 29
3.4.3 氣膠水溶性離子分析方法 30
3.4.4 氣膠碳成分檢驗分析方法 31
3.4.5 氣膠微粒揮發成分補償方法 33
3.4.6 氣膠金屬元素成分檢驗分析方法 35
3.5 正矩陣因子法PMF (POSITIVE MATRIX FACTORIZATION) 39
3.5.1 輸入資料處理 40
3.5.2 PMF操作流程 41
3.6 條件機率函數CPF (CONDITIONAL PROBABILITY FUNCTION)推估方法 46
3.7 HYSPLIT逆推軌跡方法 47
第四章 結果與討論 48
4.1 台灣北、中、南都會區PM2.5成分濃度變化趨勢 48
4.1.1 板橋站PM2.5成分濃度變化趨勢 48
4.1.2 忠明站PM2.5成分濃度變化趨勢 52
4.1.3 小港站PM2.5成分濃度變化趨勢 55
4.2 PM2.5高濃度事件成因探討與成分組成變化 58
4.2.1 台灣北、中、南都會區PM2.5高濃度事件成因 58
4.2.2 PM2.5高濃度事件化學成分增益探討 72
4.3 PM2.5碳成分推估及時空變化特性與有機成分比值推估 79
4.3.1 台灣都會區PM2.5原生或二次生成碳成分推估及時空間變化特性 79
4.3.2 台灣北、中、南、都會區PM2.5有機物比值推估 87
4.4 台灣北、中、南都會區PM2.5元素成分濃度季節變化趨勢 90
4.4.1 板橋站金屬元素成分季節變化趨勢 90
4.4.2 忠明站金屬元素成分季節變化趨勢 95
4.4.3 小港站金屬元素成分季節變化趨勢 99
4.5 PMF受體模式推估都會區PM2.5污染來源 103
4.5.1 板橋測站污染來源推估 104
4.5.2 忠明測站污染來源推估 114
4.5.3 小港測站污染來源推估 125
第五章 結論與建議 135
5.1 結論 135
5.2 建議 138
第六章 參考文獻 139
附錄一 高壓推擠事件日天氣圖 152
附錄二 事件日逆推軌跡圖 155
附錄三 採樣期間天氣因子與氣態污染物日平均值 167
附錄四 採樣期間天氣因子與污染物時間序列變化 170
附錄五 受體模式檢測結果 182
附錄六 碳成分修正前後差異 183
附錄七 監測與觀測資料季節變化差異比較 184
附錄八 採樣期間各觀測地區事件與非事件期成分圓餅圖 185
附錄九 口試委員意見答覆 186
參考文獻 Aiken, A.C., Decarlo, P.F., Kroll, J.H., Worsnop, D.R., Huffman, J.A., Docherty, K.S., Ulbrich, I.M., Mohr, C., Kimmel, J.R., Sueper, D., 2008. O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environmental Science & Technology 42, 4478-4485.
Aldabe, J., Elustondo, D., Santamaria, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., Santamaria, J.M., 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmospheric Research 102, 191-205.
Almeida, S., Pio, C., Freitas, M., Reis, M., Trancoso, M., 2005. Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmospheric Environment 39, 3127-3138.
Appel, B., Tokiwa, Y., Hsu, J., Kothny, E., Hahn, E., 1985. Visibility as related to atmospheric aerosol constituents. Atmospheric Environment (1967) 19, 1525-1534.
Bae, M.-S., Demerjian, K.L., Schwab, J.J., 2006. Seasonal estimation of organic mass to organic carbon in PM 2.5 at rural and urban locations in New York state. Atmospheric Environment 40, 7467-7479.
Barnett, A.G., Williams, G.M., Schwartz, J., Best, T.L., Neller, A.H., Petroeschevsky, A.L., Simpson, R.W., 2006. The effects of air pollution on hospitalizations for cardiovascular disease in elderly people in Australian and New Zealand cities. Environmental Health Perspectives, 1018-1023.
Begum, B.A., Biswas, S.K., Kim, E., Hopke, P.K., Khaliquzzaman, M., 2005. Investigation of sources of atmospheric aerosol at a hot spot area in Dhaka, Bangladesh. Journal of the Air & Waste Management Association 55, 227-240.
Behera, S.N., Sharma, M., Aneja, V.P., Balasubramanian, R., 2013. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ Sci Pollut Res Int 20, 8092-8131.
Bell, M.L., Davis, D.L., 2001. Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution. Environmental health perspectives 109, 389.
Birmili, W., Allen, A.G., Bary, F., Harrison, R.M., 2006. Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environmental science & technology 40, 1144-1153.
Brown, S.G., Eberly, S., Paatero, P., Norris, G.A., 2015. Methods for estimating uncertainty in PMF solutions: examples with ambient air and water quality data and guidance on reporting PMF results. Sci Total Environ 518-519, 626-635.
Buzcu, B., Fraser, M.P., Kulkarni, P., Chellam, S., 2003. Source identification and apportionment of fine particulate matter in Houston, TX, using positive matrix factorization. Environmental Engineering Science 20, 533-545.
Calvert, J.G., Stockwell, W.R., 1983. Acid generation in the troposphere by gas-phase chemistry. Environmental science & technology 17, 428A-443A.
Canepari, S., Perrino, C., Olivieri, F., Astolfi, M.L., 2008. Characterisation of the traffic sources of PM through size-segregated sampling, sequential leaching and ICP analysis. Atmospheric Environment 42, 8161-8175.
Cao, J.-j., Wang, Q.-y., Chow, J.C., Watson, J.G., Tie, X.-x., Shen, Z.-x., Wang, P., An, Z.-s., 2012. Impacts of aerosol compositions on visibility impairment in Xi′an, China. Atmospheric Environment 59, 559-566.
Cercasov, V., Pantelica, A., S?l?gean, M., Schreiber, H., 1998. Comparative evaluation of some pollutants in the airborne particulate matter in Eastern and Western Europe: two-city study, Bucharest–Stuttgart. Environmental Pollution 101, 331-337.
Cerqueira, M., Marques, D., Caseiro, A., Pio, C., 2010. Experimental evidence for a significant contribution of cellulose to indoor aerosol mass concentration. Atmospheric Environment 44, 867-871.
Cess, R.D., 1983. Arctic aerosols: Model estimates of interactive influences upon the surface-atmosphere clearsky radiation budget. Atmospheric Environment (1967) 17, 2555-2564.
Chan, Y., Simpson, R., Mctainsh, G.H., Vowles, P.D., Cohen, D., Bailey, G., 1999. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmospheric Environment 33, 3237-3250.
Charlson, R.J., 1969. Atmospheric visibility related to aerosol mass concentration: review. Environmental Science & Technology 3, 913-918.
Chen, L.-W.A., Chow, J.C., Doddridge, B.G., Dickerson, R.R., Ryan, W.F., Mueller, P.K., 2003. Analysis of a summertime PM2. 5 and haze episode in the mid-Atlantic region. Journal of the Air & Waste Management Association 53, 946-956.
Cheng, Y., Duan, F.-k., He, K.-b., Du, Z.-y., Zheng, M., Ma, Y.-l., 2012. Sampling artifacts of organic and inorganic aerosol: implications for the speciation measurement of particulate matter. Atmospheric environment 55, 229-233.
Chou, C.C.K., Lee, C.T., Cheng, M.T., Yuan, C.S., Chen, S.J., Wu, Y.L., Hsu, W.C., Lung, S.C., Hsu, S.C., Lin, C.Y., Liu, S.C., 2010. Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan. Atmospheric Chemistry and Physics 10, 9563-9578.
Chow, J.C., Bachmann, J.D., Wierman, S.S.G., Mathai, C.V., Malm, W.C., White, W.H., Mueller, P.K., Kumar, N., Watson, J.G., 2002a. Visibility: Science and Regulation. Journal of the Air & Waste Management Association 52, 973-999.
Chow, J.C., Fujita, E.M., Watson, J.G., Lu, Z., Lawson, D.R., Ashbaugh, L.L., 1994. Evaluation of filter-based aerosol measurements during the 1987 Southern California Air Quality Study. Environmental Monitoring and Assessment 30, 49-80.
Chow, J.C., Lowenthal, D.H., Chen, L.-W.A., Wang, X., Watson, J.G., 2015a. Mass reconstruction methods for PM2. 5: a review. Air Quality, Atmosphere & Health 8, 243-263.
Chow, J.C., Lowenthal, D.H., Chen, L.W., Wang, X., Watson, J.G., 2015b. Mass reconstruction methods for PM: a review. Air Qual Atmos Health 8, 243-263.
Chow, J.C., Watson, J.G., Chen, L.-W., Rice, J., Frank, N.H., 2010. Quantification of PM 2.5 organic carbon sampling artifacts in US networks. Atmospheric Chemistry and Physics 10, 5223-5239.
Chow, J.C., Watson, J.G., Edgerton, S.A., Vega, E., 2002b. Chemical composition of PM 2.5 and PM 10 in Mexico City during winter 1997. Science of the Total Environment 287, 177-201.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Magliano, K.L., 2005. Loss of PM2. 5 nitrate from filter samples in central California. Journal of the Air & Waste Management Association 55, 1158-1168.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Magliano, K.L., Ziman, S.D., Richards, L.W., 1993a. PM10 and PM2. 5 compositions in California′s San Joaquin Valley. Aerosol Science and Technology 18, 105-128.
Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993b. The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in US air quality studies. Atmospheric Environment. Part A. General Topics 27, 1185-1201.
Christian, T.J., Yokelson, R., Cardenas, B., Molina, L., Engling, G., Hsu, S.-C., 2010. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico. Atmospheric Chemistry and Physics 10, 565-584.
Chuang, M.-T., Chen, Y.-C., Lee, C.-T., Cheng, C.-H., Tsai, Y.-J., Chang, S.-Y., Su, Z.-S., 2016. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan. Environmental Pollution 214, 273-281.
Chuang, M.T., Chiang, P.C., Chan, C.C., Wang, C.F., Chang, E.E., Lee, C.T., 2008. The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Sci Total Environ 399, 128-146.
Countess, R.J., Wolff, G.T., Cadle, S.H., 1980. The Denver winter aerosol: a comprehensive chemical characterization. Journal of the Air Pollution Control Association 30, 1194-1200.
Dall′Osto, M., Querol, X., Amato, F., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Chiari, M., 2013. Hourly elemental concentrations in PM 2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS–diurnal variations and PMF receptor modelling. Atmospheric Chemistry and Physics 13, 4375-4392.
DeBell, L., Gebhart, K., Hand, J., Malm, W., Pitchford, M., Schichtel, B., White, W., 2006. Spatial and seasonal patterns and temporal variability of haze and its constituents in the United States: Report IV. Cooperative Institute for Research in the Atmosphere, 217-218.
Deng, S., Shi, Y., Liu, Y., Zhang, C., Wang, X., Cao, Q., Li, S., Zhang, F., 2014. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China. Fuel Processing Technology 126, 469-475.
Dominici, F., Peng, R.D., Bell, M.L., Pham, L., McDermott, A., Zeger, S.L., Samet, J.L., 2006. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295, 1127-1134.
Eberly, S., 2005. EPA PMF 1.1 user’s guide. Prepared by the US Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, June.
Fang, G.-C., Wu, Y.-S., Wen, C.-C., Huang, S.-H., Rau, J.-Y., 2006. Ambient air particulate concentrations and metallic elements principal component analysis at Taichung Harbor (TH) and WuChi Traffic (WT) near Taiwan Strait during 2004–2005. Journal of hazardous materials 137, 314-323.
Fann, N., Lamson, A.D., Anenberg, S.C., Wesson, K., Risley, D., Hubbell, B.J., 2012. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal 32, 81-95.
Feng, Y., Penner, J.E., 2007. Global modeling of nitrate and ammonium: Interaction of aerosols and tropospheric chemistry. Journal of Geophysical Research: Atmospheres 112.
Frank, N.H., 2006. Retained Nitrate, Hydrated Sulfates, and Carbonaceous Mass in Federal Reference Method Fine Particulate Matter for Six Eastern U.S. Cities. Journal of the Air & Waste Management Association 56, 500-511.
Hand, J., Schichtel, B., Malm, W., Pitchford, M., Frank, N., 2014. Spatial and seasonal patterns in urban influence on regional concentrations of speciated aerosols across the United States. Journal of Geophysical Research: Atmospheres 119.
Hasselriis, F., Licata, A., 1996. Analysis of heavy metal emission data from municipal waste combustion. Journal of Hazardous Materials 47, 77-102.
Hawkins, L.N., Russell, L.M., 2010. Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California Lightning Series fires. Atmospheric Environment 44, 4142-4154.
Heintzenberg, J., 1989. Fine particles in the global troposphere a review. Tellus B 41, 149-160.
Hjortenkrans, D.S., Bergback, B.G., Haggerud, A.V., 2007. Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environmental Science & Technology 41, 5224-5230.
Hodkinson, J.R., 1966. Calculation of colour and visibility in urban atmospheres polluted by gaseous NO2. Air and water pollution 10, 137-144.
Hope, B.K., 1997. An assessment of the global impact of anthropogenic vanadium. Biogeochemistry 37, 1-13.
Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., Chen, Y.-C., 2016. Elemental characterization and source apportionment of PM 10 and PM 2.5 in the western coastal area of central Taiwan. Science of the Total Environment 541, 1139-1150.
Hsu, S.-C., Liu, S.C., Lin, C.-Y., Hsu, R.-T., Huang, Y.-T., Chen, Y.-W., 2004. Metal compositions of PM10 and PM2. 5 aerosols in Taipei during spring, 2002. Terr. Atmos. Ocean. Sci 15, 925-948.
Hsu, W.-c., 1998. A novel method to measure aerosol water mass. Journal of Aerosol Science 29, 827-837.
Hsu, Y.-C., Lai, M.-H., Wang, W.-C., Chiang, H.-L., Shieh, Z.-X., 2008. Characteristics of Water-Soluble Ionic Species in Fine (PM2. 5) and Coarse Particulate Matter (PM10–2.5) in Kaohsiung, Southern Taiwan. Journal of the Air & Waste Management Association 58, 1579-1589.
Hu, C.-W., Chao, M.-R., Wu, K.-Y., Chang-Chien, G.-P., Lee, W.-J., Chang, L.W., Lee, W.-S., 2003. Characterization of multiple airborne particulate metals in the surroundings of a municipal waste incinerator in Taiwan. Atmospheric Environment 37, 2845-2852.
Huang, Y., Hsu, L., Chang, Y., 2011. Comprehensive characterization of ambient nanoparticles collected near an industrial science park: Particle size distributions and relationships with environmental factors. Journal of Environmental Sciences 23, 1334-1341.
Hwang, I., Hopke, P.K., 2007. Estimation of source apportionment and potential source locations of PM 2.5 at a west coastal IMPROVE site. Atmospheric Environment 41, 506-518.
ICRP, Protection, I.C.o.R., 1994. ICRP Publication 66: Human Respiratory Tract Model for Radiological Protection. Elsevier Health Sciences.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695-697.
Jeong, C.-H., Evans, G.J., Dann, T., Graham, M., Herod, D., Dabek-Zlotorzynska, E., Mathieu, D., Ding, L., Wang, D., 2008. Influence of biomass burning on wintertime fine particulate matter: Source contribution at a valley site in rural British Columbia. Atmospheric Environment 42, 3684-3699.
Junker, C., Wang, J.-L., Lee, C.-T., 2009. Evaluation of the effect of long-range transport of air pollutants on coastal atmospheric monitoring sites in and around Taiwan. Atmospheric Environment 43, 3374-3384.
Kaneyasu, N., Ohta, S., Murao, N., 1995. Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmospheric Environment 29, 1559-1568.
Karr, C., Lumley, T., Schreuder, A., Davis, R., Larson, T., Ritz, B., Kaufman, J., 2007. Effects of subchronic and chronic exposure to ambient air pollutants on infant bronchiolitis. American journal of epidemiology 165, 553-560.
Kaufman, Y.J., Fraser, R.S., 1997. The effect of smoke particles on clouds and climate forcing. Science 277, 1636-1639.
Kim, E., 2004. Improving source identification of fine particles in a rural northeastern U.S. area utilizing temperature-resolved carbon fractions. Journal of Geophysical Research 109.
Kim, E., Hopke, P.K., 2004. Source apportionment of fine particles in Washington, DC, utilizing temperature-resolved carbon fractions. Journal of the Air & Waste Management Association 54, 773-785.
Kim, E., Hopke, P.K., Edgerton, E.S., 2003a. Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air & Waste Management Association 53, 731-739.
Kim, E., Hopke, P.K., Edgerton, E.S., 2004. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment 38, 3349-3362.
Kim, E., Hopke, P.K., Paatero, P., Edgerton, E.S., 2003b. Incorporation of parametric factors into multilinear receptor model studies of Atlanta aerosol. Atmospheric Environment 37, 5009-5021.
Kittelson, D.B., Watts, W., Johnson, J., 2004. Nanoparticle emissions on Minnesota highways. Atmospheric Environment 38, 9-19.
Kulkarni, P., Chellam, S., Fraser, M.P., 2006. Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX. Atmospheric Environment 40, 508-520.
Kulkarni, P., Chellam, S., Fraser, M.P., 2007. Tracking petroleum refinery emission events using lanthanum and lanthanides as elemental markers for PM2. 5. Environmental science & technology 41, 6748-6754.
Kulmala, M., Keronen, P., Laaksonen, A., Vesala, T., Korhonen, P., 1995. The effect of HCl on cloud droplet formation. Journal of Aerosol Science 26, S413-S414.
Kuo, S.-C., Hsieh, L.-Y., Tsai, C.-H., Tsai, Y.I., 2007. Characterization of PM 2.5 fugitive metal in the workplaces and the surrounding environment of a secondary aluminum smelter. Atmospheric Environment 41, 6884-6900.
Lee, C.-G., Yuan, C.-S., Chang, J.-C., Yuan, C., 2005. Effects of Aerosol Species on Atmospheric Visibility in Kaohsiung City, Taiwan. Journal of the Air & Waste Management Association 55, 1031-1041.
Li, J., Posfai, M., Hobbs, P.V., Buseck, P.R., 2003. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research: Atmospheres 108.
Lin, Y.-C., Tsai, C.-J., Wu, Y.-C., Zhang, R., Chi, K.-H., Huang, Y.-T., Lin, S.-H., Hsu, S.-C., 2015. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio. Atmospheric Chemistry and Physics 15, 4117-4130.
Lowenthal, D.H., Zielinska, B., Chow, J.C., Watson, J.G., Gautam, M., Ferguson, D.H., Neuroth, G.R., Stevens, K.D., 1994. Characterization of heavy-duty diesel vehicle emissions. Atmospheric Environment 28, 731-743.
Macias, E.S., Zwicker, J.O., Ouimette, J.R., Hering, S.V., Friedlander, S.K., Cahill, T.A., Kuhlmey, G.A., Richards, L.W., 1981. Regional haze case studies in the southwestern US—I. Aerosol chemical composition. Atmospheric Environment (1967) 15, 1971-1986.
Malm, W.C., Day, D.E., 2001. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmospheric Environment 35, 2845-2860.
Malm, W.C., Schichtel, B.A., Pitchford, M.L., 2011. Uncertainties in PM2. 5 gravimetric and speciation measurements and what we can learn from them. Journal of the Air & Waste Management Association 61, 1131-1149.
McMurry, P.H., 2000. A review of atmospheric aerosol measurements. Atmospheric Environment 34, 1959-1999.
Middleton, P., Kiang, C., Mohnen, V.A., 1980. Theoretical estimates of the relative importance of various urban sulfate aerosol production mechanisms. Atmospheric Environment (1967) 14, 463-472.
Miyazaki, Y., Kondo, Y., Takegawa, N., Komazaki, Y., Fukuda, M., Kawamura, K., Mochida, M., Okuzawa, K., Weber, R., 2006. Time?resolved measurements of water?soluble organic carbon in Tokyo. Journal of Geophysical Research: Atmospheres 111.
Mohr, C., Huffman, J.A., Cubison, M.J., Aiken, A.C., Docherty, K.S., Kimmel, J.R., Ulbrich, I.M., Hannigan, M., Jimenez, J.L., 2009. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations. Environmental science & technology 43, 2443-2449.
Morishita, M., Keeler, G.J., Wagner, J.G., Harkema, J.R., 2006. Source identification of ambient PM2.5 during summer inhalation exposure studies in Detroit, MI. Atmospheric Environment 40, 3823-3834.
Mozurkewich, M., 1993. The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size. Atmospheric Environment. Part A. General Topics 27, 261-270.
Mwaniki, G.R., Rosenkrance, C., Wallace, H.W., Jobson, B.T., Erickson, M.H., Lamb, B.K., Hardy, R.J., Zalakeviciute, R., VanReken, T.M., 2014. Factors contributing to elevated concentrations of PM 2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research 5, 96-103.
Nicolas, J., Chiari, M., Crespo, J., Orellana, I.G., Lucarelli, F., Nava, S., Pastor, C., Yubero, E., 2008. Quantification of Saharan and local dust impact in an arid Mediterranean area by the positive matrix factorization (PMF) technique. Atmospheric Environment 42, 8872-8882.
Norris, G., Duvall, R., Brown, S., Bai, S., 2014. EPA Positive Matrix Factorization (PMF) 5.0 fundamentals and User Guide Prepared for the US Environmental Protection Agency Office of Research and Development, Washington, DC. DC EPA/600/R-14/108.
Ntziachristos, L., Ning, Z., Geller, M.D., Sheesley, R.J., Schauer, J.J., Sioutas, C., 2007. Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmospheric Environment 41, 5684-5696.
Paatero, P., 1997. Least squares formulation of robust non-negative factor analysis. Chemometrics and intelligent laboratory systems 37, 23-35.
Pandis, S.N., Harley, R.A., Cass, G.R., Seinfeld, J.H., 1992. Secondary organic aerosol formation and transport. Atmospheric Environment. Part A. General Topics 26, 2269-2282.
Pathak, R.K., Wu, W.S., Wang, T., 2009. Summertime PM 2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Perrone, M.R., Becagli, S., Garcia Orza, J.A., Vecchi, R., Dinoi, A., Udisti, R., Cabello, M., 2013. The impact of long-range-transport on PM1 and PM2.5 at a Central Mediterranean site. Atmospheric Environment 71, 176-186.
Pilinis, C., Seinfeld, J.H., Grosjean, D., 1989. Water content of atmospheric aerosols. Atmospheric Environment (1967) 23, 1601-1606.
Polidori, A., Turpin, B.J., Davidson, C.I., Rodenburg, L.A., Maimone, F., 2008. Organic PM 2.5: Fractionation by polarity, FTIR spectroscopy, and OM/OC ratio for the Pittsburgh aerosol. Aerosol Science and Technology 42, 233-246.
Pope III, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132-1141.
Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., Sanchez de la Campa, A., Artinano, B., Salvador, P., Garcia Dos Santos, S., Fernandez-Patier, R., Moreno-Grau, S., Negral, L., Minguillon, M.C., Monfort, E., Gil, J.I., Inza, A., Ortega, L.A., Santamaria, J.M., Zabalza, J., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment 41, 7219-7231.
Querol, X., Zhuang, X., Alastuey, A., Viana, M., Lv, W., Wang, Y., Lopez, A., Zhu, Z., Wei, H., Xu, S., 2006. Speciation and sources of atmospheric aerosols in a highly industrialised emerging mega-city in Central China. Journal of Environmental Monitoring 8, 1049-1059.
Rahn, K.A., 1999. A graphical technique for determining major components in a mixed aerosol. I. Descriptive aspects. Atmospheric Environment 33, 1441-1455.
Ram, K., Sarin, M.M., 2011. Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: Implications to secondary aerosol formation. Atmospheric Environment 45, 460-468.
Ravishankara, A., 1997. Heterogeneous and multiphase chemistry in the troposphere. Science 276, 1058-1065.
Reff, A., Bhave, P.V., Simon, H., Pace, T.G., Pouliot, G.A., Mobley, J.D., Houyoux, M., 2009. Emissions inventory of PM2. 5 trace elements across the United States. Environmental science & technology 43, 5790-5796.
Reff, A., Eberly, S.I., Bhave, P.V., 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. Journal of the Air & Waste Management Association 57, 146-154.
Ruthenburg, T.C., Perlin, P.C., Liu, V., McDade, C.E., Dillner, A.M., 2014. Determination of organic matter and organic matter to organic carbon ratios by infrared spectroscopy with application to selected sites in the IMPROVE network. Atmospheric Environment 86, 47-57.
Sorme, L., Bergback, B., Lohm, U., 2001. Goods in the anthroposphere as a metal emission source a case study of Stockholm, Sweden. Water, air and soil pollution: Focus 1, 213-227.
Salvador, P., Art??nano, B., Alonso, D.G., Querol, X., Alastuey, A., 2004. Identification and characterisation of sources of PM 10 in Madrid (Spain) by statistical methods. Atmospheric Environment 38, 435-447.
Samara, C., Voutsa, D., Kouras, A., Eleftheriadis, K., Maggos, T., Saraga, D., Petrakakis, M., 2014. Organic and elemental carbon associated to PM10 and PM 2.5 at urban sites of northern Greece. Environ Sci Pollut Res Int 21, 1769-1785.
Samoli, E., Nastos, P., Paliatsos, A., Katsouyanni, K., Priftis, K., 2011. Acute effects of air pollution on pediatric asthma exacerbation: evidence of association and effect modification. Environmental Research 111, 418-424.
Sanders, P.G., Xu, N., Dalka, T.M., Maricq, M.M., 2003. Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests. Environmental science & technology 37, 4060-4069.
Santacatalina, M., Reche, C., Minguillon, M.C., Escrig, A., Sanfelix, V., Carratala, A., Nicolas, J.F., Yubero, E., Crespo, J., Alastuey, A., Monfort, E., Miro, J.V., Querol, X., 2010. Impact of fugitive emissions in ambient PM levels and composition: a case study in Southeast Spain. Sci Total Environ 408, 4999-5009.
Schwartz, J., Dockery, D.W., Neas, L.M., 1996. Is Daily Mortality Associated Specifically with Fine Particles? Journal of the Air & Waste Management Association 46, 927-939.
Shao, X., Cheng, H., Li, Q., Lin, C., 2013. Anthropogenic atmospheric emissions of cadmium in China. Atmospheric Environment 79, 155-160.
Silva, P.J., Prather, K.A., 1997. On-Line Characterization of Individual Particles from Automobile Emissions. Environmental Science & Technology 31, 3074-3080.
Solomon, P.A., Fall, T., Salmon, L., Cass, G.R., Gray, H.A., Davidson, A., 1989. Chemical characteristics of PM10 aerosols collected in the Los Angeles area. JAPCA 39, 154-163.
Song, X.-H., Polissar, A.V., Hopke, P.K., 2001. Sources of fine particle composition in the northeastern US. Atmospheric Environment 35, 5277-5286.
Song, Y., Zhang, Y., Xie, S., Zeng, L., Zheng, M., Salmon, L.G., Shao, M., Slanina, S., 2006. Source apportionment of PM2. 5 in Beijing by positive matrix factorization. Atmospheric Environment 40, 1526-1537.
Sternbeck, J., Sjodin, A., Andreasson, K., 2002. Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmospheric Environment 36, 4735-4744.
Strader, R., 1999. Evaluation of secondary organic aerosol formation in winter. Atmospheric Environment 33, 4849-4863.
Taylor, S., 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et cosmochimica acta 28, 1273-1285.
Tian, H., Cheng, K., Wang, Y., Zhao, D., Lu, L., Jia, W., Hao, J., 2012. Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China. Atmospheric Environment 50, 157-163.
Tian, H., Wang, Y., Xue, Z., Cheng, K., Qu, Y., Chai, F., Hao, J., 2010. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmospheric Chemistry and Physics 10, 11905-11919.
Tsai, J.-H., Lin, K.-H., Chen, C.-Y., Ding, J.-Y., Choa, C.-G., Chiang, H.-L., 2007. Chemical constituents in particulate emissions from an integrated iron and steel facility. Journal of Hazardous Materials 147, 111-119.
Tsai, Y., Chen, C., 2006. Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmospheric Environment 40, 4734-4750.
Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Turpin, B.J., Huntzicker, J.J., Hering, S.V., 1994. Investigation of organic aerosol sampling artifacts in the Los Angeles basin. Atmospheric Environment 28, 3061-3071.
Twomey, S., 1977. The Influence of Pollution on the Shortwave Albedo of Clouds. Journal of the Atmospheric Sciences 34, 1149-1152.
Waggoner, A.P., Weiss, R.E., Ahlquist, N.C., Covert, D.S., Will, S., Charlson, R.J., 1981. Optical characteristics of atmospheric aerosols. Atmospheric Environment (1967) 15, 1891-1909.
Wall, S.M., John, W., Ondo, J.L., 1988. Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment (1967) 22, 1649-1656.
Wang, X., Zhang, Y., Chen, H., Yang, X., Chen, J., Geng, F., 2009. Particulate nitrate formation in a highly polluted urban area: a case study by single-particle mass spectrometry in Shanghai. Environmental science & technology 43, 3061-3066.
Wang, Y.-F., Huang, K.-L., Li, C.-T., Mi, H.-H., Luo, J.-H., Tsai, P.-J., 2003. Emissions of fuel metals content from a diesel vehicle engine. Atmospheric Environment 37, 4637-4643.
Watson, J.G., 2002. Visibility: Science and regulation. Journal of the Air & Waste Management Association 52, 628-713.
Watson, J.G., Chow, J.C., Lowenthal, D.H., Pritchett, L.C., Frazier, C.A., Neuroth, G.R., Robbins, R., 1994. Differences in the carbon composition of source profiles for diesel-and gasoline-powered vehicles. Atmospheric Environment 28, 2493-2505.
Weckwerth, G., 2001. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric environment 35, 5525-5536.
Xia, L., Gao, Y., 2011. Characterization of trace elements in PM 2.5 aerosols in the vicinity of highways in northeast New Jersey in the US east coast. Atmospheric Pollution Research 2, 34-44.
Yang, F., He, K., Ma, Y., Chen, X., Cadle, S., Tai, C., Mulawa, P., 2003. [Characteristics and sources of trace elements in ambient PM2. 5 in Beijing]. Huan jing ke xue= Huanjing kexue/[bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui" Huan jing ke xue" bian ji wei yuan hui.] 24, 33-37.
Yang, H.-H., 2015. Emission Characteristics and Chemical Compositions of both Filterable and Condensable Fine Particulate from Steel Plants. Aerosol and Air Quality Research 15.
Yang, H.-H., Lee, K.-T., Hsieh, Y.-S., Luo, S.-W., Huang, R.-J., 2015. Emission Characteristics and Chemical Compositions of both Filterable and Condensable Fine Particulate from Steel Plants. Aerosol and Air Quality Research 15, 1672-1680.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002. The water-soluble ionic composition of PM2. 5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234.
Yoo, J.-I., Kim, K.-H., Jang, H.-N., Seo, Y.-C., Seok, K.-S., Hong, J.-H., Jang, M., 2002. Emission characteristics of particulate matter and heavy metals from small incinerators and boilers. Atmospheric Environment 36, 5057-5066.
Yu, X., Ma, J., Raghavendra Kumar, K., Zhu, B., An, J., He, J., Li, M., 2016. Measurement and analysis of surface aerosol optical properties over urban Nanjing in the Chinese Yangtze River Delta. Science of The Total Environment 542, 277-291.
Zhang, Q., Worsnop, D., Canagaratna, M., Jimenez, J., 2005. Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmospheric Chemistry and Physics 5, 3289-3311.
Zhang, X., Gong, S., Shen, Z., Mei, F., Xi, X., Liu, L., Zhou, Z., Wang, D., Wang, Y., Cheng, Y., 2003. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE?Asia: 1. Network observations. Journal of Geophysical Research: Atmospheres 108.
Zhao, W., Hopke, P.K., 2004. Source apportionment for ambient particles in the San Gorgonio wilderness. Atmospheric Environment 38, 5901-5910.
Zheng, G., Duan, F., Su, H., Ma, Y., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., 2015. Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chemistry and Physics 15, 2969-2983.
Zhu, C.-S., Chen, C.-C., Cao, J.-J., Tsai, C.-J., Chou, C.C.-K., Liu, S.-C., Roam, G.-D., 2010. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmospheric Environment 44, 2668-2673.
Zoller, W., Gordon, G., Gladney, E., Jones, A., 1971. SOURCES AND DISTRIBUTION OF VANADIUM IN THE ATMOSPHERE. Amer. Chem. Soc., Div. Water, Air Waste Chem., Gen. Pap. 11: No. 2, 159-65 (1971).
陳聖中, 2012. 台灣都市地區細懸浮微粒 (PM2. 5) 手動採樣分析探討. 國立中央大學環境工程研究所碩士論文.
施韋羽, 2013. 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其
對大氣能見度影響. 國立中央大學環境工程研究所碩士論文.
許家綺, 2015. 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來
源推估及對能見度影響. 國立中央大學環境工程研究所碩士論文.
指導教授 李崇德(Chung-Te Lee) 審核日期 2017-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明