博碩士論文 101326022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.229.122.219
姓名 張惟竣(Wei-Chun Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例
(Probing the biogeochemical processes of methylmercury formation and accumulation in the paddy system in the vicinity of a municipal solid waste incinerator)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響
★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
★ 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢★ 掩埋場滲出水環境之汞甲基化潛勢探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自工業革命開始,環境中汞的排放源已知主要與人為活動有關,特別是焚化廠及燃煤發電廠的運作。汞經排出後,部分(當中絕大多數為氧化態的無機二價汞)會因沉降作用降至附近地表,並有機會被現地異營性的厭氧微生物轉化成毒性更強的甲基汞。早期的研究認為,甲基汞的曝露與中毒都是透過魚類海鮮的攝取而造成,但近期文獻發現,高濃度的甲基汞可從生長在離汞排放源相近的稻米中檢測出來,暗示著陸域生態系中的食物也可能成為甲基汞的攝食途徑之一。由於稻米是台灣也是許多亞洲地區人民的主食,因此對於水稻田為何易成為甲基汞的生成環境,生地化循環如何涉入其過程,以及排放源造成甲基汞在稻米的累積效應為何是值得深入探討的課題。
有鑑於此,本研究針對北投垃圾焚化廠周圍水稻田的表土、表水、根系土壤與其孔隙水中的總汞與甲基汞,以及可能影響無機汞生地化循環(特別是與甲基汞生成相關)的參數進行樣品的採樣分析,並同時分析當地稻作的總汞和甲基汞含量,以了解此農地場址的汞物種背景值與生物有效性程度;除此之外,也藉由培養現地土壤的縮模試驗及分生技術調查場址內可能將汞甲基化的主要厭氧微生物族群;最後,利用水耕植栽試驗探討培養液中的化學組成對稻作吸收與累積甲基汞的影響。
調查結果指出,所選場址的土壤、孔隙水,以及栽種在此區的稻米,其總汞與甲基汞含量皆無超過法規的農地與食用米標準,且與文獻中所提的背景值相近,顯示排放源的空污防治設備可有效管控汞的排放,未造成此區稻田顯著的汞累積。而根據現地地質化學與微生物族群的分析可知:(1)孔隙水中的甲基汞與無機汞濃度呈顯著正相關;(2)場址內的硫與鐵條件適合汞甲基化菌群的生長;(3)硫酸鹽還原菌可能是場址內主要的汞甲基化菌群。綜合這些因素,暗示著若研究場址的總汞濃度增加,其根系環境將具有促進甲基汞生成與累積的潛勢,故定期監測此敏感生態系統的汞濃度變化有其必要。此外,藉由添加不同形式的配位基而改變稻作培養液的甲基汞化學組成後發現,配位化學可造成稻作不同程度的甲基汞攝取及累積,然此部分的機制原理仍需進一步的探究。
摘要(英) Since the industrial revolution, the release of mercury (Hg) from emission sources to the environment has been predominantly resulted from human activities, with burning of fossil fuels and waste being the leading contributors. Once released, a partial amount of Hg (mostly in its divalent inorganic forms) would return to the Earth’s surface by wet or dry deposition and then be converted in situ by certain heterogeneous anaerobic bacteria to methylmercury (MeHg), the most toxic form of Hg and known for its great bioaccumulation tendency . While consumption of predatory fish and seafood has been considered the primary route for human exposed to MeHg, recent studies have reported high levels of MeHg in rice grown in the vicinity of anthropogenic Hg releasing sources, suggesting that ingestion of crops from the terrestrial food chain may be another critical route of human exposure to MeHg. Given that (i) rice is a staple food in Taiwan and throughout Asia and (ii) the potential for maternal MeHg exposure (even at low-level) through ingestion of rice that may subsequently impact health of the offspring, it is important to conduct thorough investigation of this exposure route by examining why rice paddies are conductive for Hg methylation, which biogeochemical reactions may have been involved in this process, and also how additional inputs resulted from anthropogenic perturbations may eventually lead to the potential accumulation of Hg and MeHg in rice plants.
In this study, four paddy sites within the agricultural area of the Beitou municipal solid waste (MSW) incinerator were chosen to sample surface water, topsoil and root soil. Total Hg, MeHg, as well as ancillary geochemical/microbiological parameters in soil, porewater, and rice grains were analyzed. In addition, microcosm and hydroponic experiments were carried out to probe (i) the primary Hg methylators in the root soil of the study sites and (ii) the influence of coordination chemistry on the uptake of MeHg by roots of rice plants. Results showed that the levels of total Hg and MeHg in paddy soil and rice grains did not exceed the current standards set for farmland soil and edible rice, suggesting that our study sites are not contaminated with Hg and the air control devices employed in the Beitou MSW incinerator may have been efficient for the control of Hg emission. However, it is observed that both the bioavailability of inorganic Hg and the activity of Hg-methylating microbes increased during the early and mid rice growing season, presumably due to the anoxia created under flooded conditions. This suggested that the paddy ecosystem has a great potential for enhanced Hg-methylation if elevated inputs of Hg occurred, and hence there is a need for constant monitoring of the Hg level in this area. Results of microcosm experiments revealed that sulfate-reducing bacteria may be the principal Hg-methylators in the rhizospheric zones of the study sites. Molecular identification of the hgcA gene in the root soil samples further confirmed the existence of Hg-methylating microbes. Lastly, using different forms of ligands to alter MeHg speciation in the growing medium, preliminary results from the hydroponic culturing of rice implied that both passive diffusion and active transport mechanisms may all take place in the root uptake of MeHg in rice.
關鍵字(中) ★ 甲基汞生成
★ 水稻田
★ 現地環境生物地質化學
★ 焚化爐
關鍵字(英)
論文目次 摘要 I
Abstrate III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XI
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1 汞的來源和型態 5
2.2 汞的毒性與相關法規 6
2.3 濕地為汞甲基化之熱點場址 8
2.4 汞的化學組成對微生物行甲基化的影響 9
2.5 稻田土中參與汞甲基化的微生物 11
2.6 稻田中甲基汞含量 13
第三章 研究方法與流程 15
3.1 場址描述 15
3.2 採樣用具的清洗 16
3.3 採樣規劃及流程 17
3.4 實驗藥品與試劑 21
3.4.1 地化參數分析用藥品 21
3.4.2 分子生物試驗用kit和藥劑 21
3.4.3 試劑 22
3.5 實驗設備與儀器 26
3.5.1 實驗設備 26
3.5.2 分析用儀器 28
3.6 實驗室分析 30
3.6.1 總汞分析 30
3.6.2 甲基汞分析 31
3.6.3 有機質分析 32
3.6.4 生物可利用性鐵分析 32
3.6.5 硫化物分析 33
3.6.6 孔隙水硫酸鹽分析 35
3.6.7 縮模試驗甲烷分析 35
3.8 稻米種植縮模試驗 37
3.9 分子生物試驗 38
3.9.1 DNA萃取 38
3.9.2 聚合酶鏈鎖反應(Polymerase Chain Reaction, PCR) 38
3.9.3 瓊脂膠體電泳 40
第四章 結果與討論 41
4.1 現地的汞甲基化菌群分析調查 41
4.1.1 現地汞甲基化基因偵測 42
4.1.2根系土壤之主要汞甲基化菌群分析 45
4.2 稻田土壤與孔隙水中總汞和甲基汞含量 51
4.3 稻米樣品的總汞和甲基汞含量 58
4.4 稻田環境之地化參數分析 60
4.5 甲基汞化學組成對稻作攝取甲基汞含量影響之相關性 69
4.6 台灣其他汞排放源地區稻田參數比較 75
第五章 結論與建議 78
5.1 結論 78
5.2 建議 79
參考文獻 80
參考文獻 1. Acha, D., H. Hintelmann, and J. Yee, “Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region”, Chemosphere, vol. 82, pp. 911-916,(2011).
2. Acha, D., V. Iniguez, M. Roulet, J. R. Guimaraes, R. Luna, L. Alanoca, and S. Sanchez, “Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation”, Appl Environ Microbiol, vol. 71, pp. 7531-7535,(2005).
3. Ackerman, J. T., A. K. Miles, and C. A. Eagles-Smith, “Invertebrate mercury bioaccumulation in permanent, seasonal, and flooded rice wetlands within California′s Central Valley”, Sci Total Environ, vol. 408, pp. 666-671,(2010).
4. Adachi, T., “Characteristic effects of L-methionine on tissue distribution of methylmercury in mice”, Journal of health science, vol. 52, pp. 174-179,(2006).
5. Amirbahman, A., A. L. Reid, T. A. Haines, J. S. Kahl, and C. Arnold, “Association of methylmercury with dissolved humic acids”, Environ Sci Technol, vol. 36, pp. 690-695,(2002).
6. APHA, “Standard Methods for the Examination of Water and Wastewater, twentieth ed.”, Washington, DC.,(1998).
7. Barkay, T., M. Gillman, and R. R. Turner, “Effects of dissolved organic carbon and salinity on bioavailability of mercury”, Appl Environ Microbiol, vol. 63, pp. 4267-4271,(1997).
8. Barrett, J. R., “Rice is a significant source of methylmercury: research in China assesses exposures”, Environ Health Perspect, vol. 118, p. A398,(2010).
9. Barringer, J. L., and Z. Szabo, “Overview of investigations into mercury in ground water, soils, and septage, New Jersey Coastal Plain”, Water, Air, and Soil Pollution, vol. 175, pp. 193-221,(2006).
10. Benoit, J., C. Gilmour, A. Heyes, R. Mason, and C. Miller, 2003, Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems, ACS symposium series, p. 262-297.
11. Benoit, J., C. C. Gilmour, R. Mason, G. Riedel, and G. Riedel, “Behavior of mercury in the Patuxent River estuary”, Biogeochemistry, vol. 40, pp. 249-265,(1998).
12. Bishop, K. H., Y.-H. Lee, J. Munthe, and E. Dambrine, “Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest”, Biogeochemistry, vol. 40, pp. 101-113,(1998).
13. Carpi, A., “Mercury from combustion sources: a review of the chemical species emitted and their transport in the atmosphere”, Water, Air, and Soil Pollution, vol. 98, pp. 241-254,(1997).
14. Cock, J., S. Yoshida, and D. A. Forno, “Laboratory manual for physiological studies of rice”, Int. Rice Res. Inst. (1976).
15. Compeau, G., and R. Bartha, “Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment”, Appl Environ Microbiol, vol. 50, pp. 498-502,(1985).
16. Conaway, C. H., S. Squire, R. P. Mason, and A. R. Flegal, “Mercury speciation in the San Francisco Bay estuary”, Marine Chemistry, vol. 80, pp. 199-225,(2003).
17. Ericksen, J., M. Gustin, D. Schorran, D. Johnson, S. Lindberg, and J. Coleman, “Accumulation of atmospheric mercury in forest foliage”, Atmospheric Environment, vol. 37, pp. 1613-1622,(2003).
18. Feng, X., P. Li, G. Qiu, S. Wang, G. Li, L. Shang, B. Meng, H. Jiang, W. Bai, and Z. Li, “Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China”, Environ Sci Technol, vol. 42, pp. 326-332,(2007).
19. Fleming, E. J., E. E. Mack, P. G. Green, and D. C. Nelson, “Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium”, Appl Environ Microbiol, vol. 72, pp. 457-464,(2006).
20. Ganguli, P. M., R. P. Mason, K. E. Abu-Saba, R. S. Anderson, and A. R. Flegal, “Mercury speciation in drainage from the New Idria mercury mine, California”, Environ Sci Technol, vol. 34, pp. 4773-4779,(2000).
21. Gilmour, C. C., D. A. Elias, A. M. Kucken, S. D. Brown, A. V. Palumbo, C. W. Schadt, and J. D. Wall, “Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation”, Appl Environ Microbiol, vol. 77, pp. 3938-3951,(2011).
22. Gilmour, C. C., M. Podar, A. L. Bullock, A. M. Graham, S. D. Brown, A. C. Somenahally, A. Johs, R. A. Hurt, Jr., K. L. Bailey, and D. A. Elias, “Mercury methylation by novel microorganisms from new environments”, Environ Sci Technol, vol. 47, pp. 11810-11820,(2013).
23. Gilmour, C. C., G. Riedel, M. Ederington, J. Bell, G. Gill, and M. Stordal, “Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades”, Biogeochemistry, vol. 40, pp. 327-345,(1998).
24. Hamelin, S., M. Amyot, T. Barkay, Y. Wang, and D. Planas, “Methanogens: principal methylators of mercury in lake periphyton”, Environ Sci Technol, vol. 45, pp. 7693-7700,(2011).
25. Han, F. X., Y. Su, D. L. Monts, C. A. Waggoner, and M. J. Plodinec, “Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA”, Sci Total Environ, vol. 368, pp. 753-768,(2006).
26. Horvat, M., N. Nolde, V. Fajon, V. Jereb, M. Logar, S. Lojen, R. Jacimovic, I. Falnoga, Q. Liya, J. Faganeli, and D. Drobne, “Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China”, Science of The Total Environment, vol. 304, pp. 231-256,(2003).
27. Hu, H., H. Lin, W. Zheng, S. J. Tomanicek, A. Johs, X. Feng, D. A. Elias, L. Liang, and B. Gu, “Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria”, Nature Geoscience, vol. 6, pp. 751-754,(2013).
28. Hurley, J. P., J. M. Benoit, C. L. Babiarz, M. M. Shafer, A. W. Andren, J. R. Sullivan, R. Hammond, and D. A. Webb, “Influences of watershed characteristics on mercury levels in Wisconsin rivers”, Environ Sci Technol, vol. 29, pp. 1867-1875,(1995).
29. Jay, J. A., F. M. Morel, and H. F. Hemond, “Mercury speciation in the presence of polysulfides”, Environ Sci Technol, vol. 34, pp. 2196-2200,(2000).
30. Jensen, S., and A. Jernelöv, “Biological methylation of mercury in aquatic organisms”,(1969).
31. Kraepiel, A. M., K. Keller, H. B. Chin, E. G. Malcolm, and F. M. Morel, “Sources and variations of mercury in tuna”, Environ Sci Technol, vol. 37, pp. 5551-5558,(2003).
32. Lambertsson, L., and M. Nilsson, “Organic material: the primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments”, Environ Sci Technol, vol. 40, pp. 1822-1829,(2006).
33. Landis, M. S., J. V. Ryan, A. F. Ter Schure, and D. Laudal, “Behavior of Mercury Emissions from a Commercial Coal-Fired Power Plant: The Relationship between Stack Speciation and Near-Field Plume Measurements”, Environ Sci Technol,(2014).
34. Li, L., F. Wang, B. Meng, M. Lemes, X. Feng, and G. Jiang, “Speciation of methylmercury in rice grown from a mercury mining area”, Environ Pollut, vol. 158, pp. 3103-3107,(2010a).
35. Li, P., X. Feng, and G. Qiu, “Methylmercury exposure and health effects from rice and fish consumption: a review”, Int J Environ Res Public Health, vol. 7, pp. 2666-2691,(2010b).
36. Li, P., X. Feng, X. Yuan, H. M. Chan, G. Qiu, G. X. Sun, and Y. G. Zhu, “Rice consumption contributes to low level methylmercury exposure in southern China”, Environ Int, vol. 49, pp. 18-23,(2012).
37. Lin, C. C., N. Yee, and T. Barkay, “Microbial transformations in the mercury cycle”, Environmental chemistry and toxicology of mercury, pp. 155-191,(2012).
38. Lindberg, S., D. Jackson, J. Huckabee, S. Janzen, M. Levin, and J. Lund, “Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine”, Journal of Environmental Quality, vol. 8, pp. 572-578,(1979).
39. Liu, B., G. J. Keeler, J. T. Dvonch, J. A. Barres, M. M. Lynam, F. J. Marsik, and J. T. Morgan, “Temporal variability of mercury speciation in urban air”, Atmospheric Environment, vol. 41, pp. 1911-1923,(2007).
40. Liu, J., X. Feng, G. Qiu, C. W. Anderson, and H. Yao, “Prediction of methyl mercury uptake by rice plants ( Oryza sativa L.) using the diffusive gradient in thin films technique”, Environ Sci Technol, vol. 46, pp. 11013-11020,(2012).
41. Liu, J., K. T. Valsaraj, and R. Delaune, “Inhibition of mercury methylation by iron sulfides in an anoxic sediment”, Environmental Engineering Science, vol. 26, pp. 833-840,(2009).
42. Liu, J., K. T. Valsaraj, I. Devai, and R. D. DeLaune, “Immobilization of aqueous Hg(II) by mackinawite (FeS)”, J Hazard Mater, vol. 157, pp. 432-440,(2008).
43. Liu, Y. R., R. Q. Yu, Y. M. Zheng, and J. Z. He, “Analysis of the Microbial Community Structure by Monitoring an Hg Methylation Gene (hgcA) in Paddy Soils along an Hg Gradient”, Appl Environ Microbiol, vol. 80, pp. 2874-2879,(2014).
44. Lovley, D. R., and E. J. Phillips, “Rapid assay for microbially reducible ferric iron in aquatic sediments”, Appl Environ Microbiol, vol. 53, pp. 1536-1540,(1987).
45. Marvin-DiPasquale, M., J. Agee, R. Bouse, and B. Jaffe, “Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California”, Environmental Geology, vol. 43, pp. 260-267,(2003).
46. Marvin-DiPasquale, M., L. Windham-Myers, J. L. Agee, E. Kakouros, H. Kieu le, J. A. Fleck, C. N. Alpers, and C. A. Stricker, “Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA”, Sci Total Environ, vol. 484, pp. 288-299,(2014).
47. Mason, R. P., M. L. Abbott, R. Bodaly, O. R. Bullock, J. Jr, C. T. Driscoll, D. Evers, S. E. Lindberg, M. Murray, and E. B. Swain, “Monitoring the response to changing mercury deposition”, Environ Sci Technol, vol. 39, pp. 14A-22A,(2005).
48. Mason, R. P., W. F. Fitzgerald, and F. M. Morel, “The biogeochemical cycling of elemental mercury: anthropogenic influences”, Geochimica et Cosmochimica Acta, vol. 58, pp. 3191-3198,(1994).
49. Mehrotra, A. S., A. J. Horne, and D. L. Sedlak, “Reduction of net mercury methylation by iron in Desulfobulbus propionicus (1pr3) cultures: implications for engineered wetlands”, Environ Sci Technol, vol. 37, pp. 3018-3023,(2003).
50. Mehrotra, A. S., and D. L. Sedlak, “Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries”, Environ Sci Technol, vol. 39, pp. 2564-2570,(2005).
51. Meng, B., X. Feng, G. Qiu, C. W. Anderson, J. Wang, and L. Zhao, “Localization and speciation of mercury in brown rice with implications for pan-Asian public health”, Environ Sci Technol, vol. 48, pp. 7974-7981,(2014).
52. Meng, B., X. Feng, G. Qiu, Y. Cai, D. Wang, P. Li, L. Shang, and J. Sommar, “Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways”, J Agric Food Chem, vol. 58, pp. 4951-4958,(2010).
53. Meng, B., X. Feng, G. Qiu, P. Liang, P. Li, C. Chen, and L. Shang, “The process of methylmercury accumulation in rice (Oryza sativa L.)”, Environ Sci Technol, vol. 45, pp. 2711-2717,(2011).
54. Meng, B., X. Feng, G. Qiu, D. Wang, P. Liang, P. Li, and L. Shang, “Inorganic mercury accumulation in rice (Oryza sativa L.)”, Environ Toxicol Chem, vol. 31, pp. 2093-2098,(2012).
55. Morel, F. M., “Principles and applications of aquatic chemistry”, John Wiley & Sons (1993).
56. Munthe, J., R. Bodaly, B. A. Branfireun, C. T. Driscoll, C. C. Gilmour, R. Harris, M. Horvat, M. Lucotte, and O. Malm, “Recovery of mercury-contaminated fisheries”, AMBIO: A Journal of the Human Environment, vol. 36, pp. 33-44,(2007).
57. Ndu, U., R. P. Mason, H. Zhang, S. Lin, and P. T. Visscher, “Effect of inorganic and organic ligands on the bioavailability of methylmercury as determined by using a mer-lux bioreporter”, Appl Environ Microbiol, vol. 78, pp. 7276-7282,(2012).
58. Parks, J. M., A. Johs, M. Podar, R. Bridou, R. A. Hurt, Jr., S. D. Smith, S. J. Tomanicek, Y. Qian, S. D. Brown, C. C. Brandt, A. V. Palumbo, J. C. Smith, J. D. Wall, D. A. Elias, and L. Liang, “The genetic basis for bacterial mercury methylation”, Science, vol. 339, pp. 1332-1335,(2013).
59. Qiu, G., X. Feng, P. Li, S. Wang, G. Li, L. Shang, and X. Fu, “Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China”, Journal of Agricultural and Food Chemistry, vol. 56, pp. 2465-2468,(2008).
60. Quig, D., “Cysteine metabolism and metal toxicity”, Alternative Medicine Review, vol. 3, pp. 262-270,(1998).
61. Roos, D. H., R. L. Puntel, M. Farina, M. Aschner, D. Bohrer, J. B. Rocha, and N. B. de Vargas Barbosa, “Modulation of methylmercury uptake by methionine: prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism”, Toxicol Appl Pharmacol, vol. 252, pp. 28-35,(2011).
62. Rothenberg, S. E., R. F. Ambrose, and J. A. Jay, “Mercury cycling in surface water, pore water and sediments of Mugu Lagoon, CA, USA”, Environ Pollut, vol. 154, pp. 32-45,(2008).
63. Rothenberg, S. E., and X. Feng, “Mercury cycling in a flooded rice paddy”, Journal of Geophysical Research, vol. 117,(2012).
64. Rothenberg, S. E., X. Feng, B. Dong, L. Shang, R. Yin, and X. Yuan, “Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies”, Environ Pollut, vol. 159, pp. 1283-1289,(2011a).
65. Rothenberg, S. E., X. Feng, and P. Li, “Low-level maternal methylmercury exposure through rice ingestion and potential implications for offspring health”, Environ Pollut, vol. 159, pp. 1017-1022,(2011b).
66. Rothenberg, S. E., X. Feng, W. Zhou, M. Tu, B. Jin, and J. You, “Environment and genotype controls on mercury accumulation in rice (Oryza sativa L.) cultivated along a contamination gradient in Guizhou, China”, Sci Total Environ, vol. 426, pp. 272-280,(2012).
67. Rothenberg, S. E., L. Windham-Myers, and J. E. Creswell, “Rice methylmercury exposure and mitigation: a comprehensive review”, Environ Res, vol. 133, pp. 407-423,(2014).
68. Sakai, S., H. Imachi, Y. Sekiguchi, A. Ohashi, H. Harada, and Y. Kamagata, “Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I”, Appl Environ Microbiol, vol. 73, pp. 4326-4331,(2007).
69. Schaefer, J. K., R. M. Kronberg, F. M. M. Morel, and U. Skyllberg, “Detection of a key Hg methylation gene,hgcA, in wetland soils”, Environmental Microbiology Reports, vol. 6, pp. 441-447,(2014).
70. Schaefer, J. K., and F. M. M. Morel, “High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens”, Nature Geoscience, vol. 2, pp. 123-126,(2009).
71. Schaefer, J. K., S. S. Rocks, W. Zheng, L. Liang, B. Gu, and F. M. Morel, “Active transport, substrate specificity, and methylation of Hg (II) in anaerobic bacteria”, Proceedings of the National Academy of Sciences, vol. 108, pp. 8714-8719,(2011).
72. Scheid, D., and S. Stubner, “Structure and diversity of Gram‐negative sulfate‐reducing bacteria on rice roots”, FEMS Microbiol Ecol, vol. 36, pp. 175-183,(2001).
73. Schroeder, W. H., and J. Munthe, “Atmospheric mercury—an overview”, Atmospheric Environment, vol. 32, pp. 809-822,(1998).
74. Schuster, P. F., D. P. Krabbenhoft, D. L. Naftz, L. D. Cecil, M. L. Olson, J. F. Dewild, D. D. Susong, J. R. Green, and M. L. Abbott, “Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources”, Environ Sci Technol, vol. 36, pp. 2303-2310,(2002).
75. Schwesig, D., and O. Krebs, “The role of ground vegetation in the uptake of mercury and methylmercury in a forest ecosystem”, Plant and Soil, vol. 253, pp. 445-455,(2003).
76. Simmons-Willis, T., A. Koh, T. Clarkson, and N. Ballatori, “Transport of a neurotoxicant by molecular mimicry: the methylmercury–L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2”, Biochem. J, vol. 367, pp. 239-246,(2002).
77. Skyllberg, U., “Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production”, Journal of Geophysical Research, vol. 113,(2008).
78. Speers, A. M., D. L. Cologgi, and G. Reguera, “Anaerobic cell culture”, Current protocols in microbiology, pp. A. 4F. 1-A. 4F. 16,(2009).
79. St. Louis, V. L., J. W. Rudd, C. A. Kelly, K. G. Beaty, N. S. Bloom, and R. J. Flett, “Importance of wetlands as sources of methyl mercury to boreal forest ecosystems”, Canadian Journal of fisheries and aquatic sciences, vol. 51, pp. 1065-1076,(1994).
80. St. Louis, V. L., J. W. Rudd, C. A. Kelly, K. G. Beaty, R. J. Flett, and N. T. Roulet, “Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands”, Environ Sci Technol, vol. 30, pp. 2719-2729,(1996).
81. Stubner, S., T. Wind, and R. Conrad, “Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria”, Systematic and applied microbiology, vol. 21, pp. 569-578,(1998).
82. Suchanek, T. H., P. J. Richerson, J. R. Flanders, D. C. Nelson, L. H. Mullen, L. L. Brister, and J. C. Becker, Monitoring inter-annual variability reveals sources of mercury contamination in Clear Lake, California, Monitoring Ecological Condition in the Western United States, Springer, pp. 299-310,(2000).
83. Ulrich, P. D., and D. L. Sedlak, “Impact of iron amendment on net methylmercury export from tidal wetland microcosms”, Environ Sci Technol, vol. 44, pp. 7659-7665,(2010).
84. UNEP, “The global atmospheric mercury assessment: sources, emissions and transport”,(2008).
85. UNEP, “Mercury TimeTo Act”,(2013).
86. USEPA, “Method 1669: sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels.”, Washington, DC.,(1996).
87. USEPA, “Method 1630: methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and Cold Vapor Atomic Spectrometry.”, Washington, DC.,(2001).
88. USEPA, “Method 1631: revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry.”, Washington, DC.,(2002).
89. Wang, Q., D. Kim, D. D. Dionysiou, G. A. Sorial, and D. Timberlake, “Sources and remediation for mercury contamination in aquatic systems--a literature review”, Environ Pollut, vol. 131, pp. 323-336,(2004).
90. Wang, X., Z. Ye, B. Li, L. Huang, M. Meng, J. Shi, and G. Jiang, “Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg”, Environ Sci Technol, vol. 48, pp. 1878-1885,(2014).
91. Wiatrowski, H. A., P. M. Ward, and T. Barkay, “Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria”, Environ Sci Technol, vol. 40, pp. 6690-6696,(2006).
92. Windham-Myers, L., J. A. Fleck, J. T. Ackerman, M. Marvin-DiPasquale, C. A. Stricker, W. A. Heim, P. A. Bachand, C. A. Eagles-Smith, G. Gill, M. Stephenson, and C. N. Alpers, “Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study”, Sci Total Environ, vol. 484, pp. 221-231,(2014).
93. Yin, R., X. Feng, and B. Meng, “Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China”, Environ Sci Technol, vol. 47, pp. 2238-2245,(2013).
94. Yu, R. Q., I. Adatto, M. R. Montesdeoca, C. T. Driscoll, M. E. Hines, and T. Barkay, “Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland”, FEMS Microbiol Ecol, vol. 74, pp. 655-668,(2010).
95. Yu, R. Q., J. R. Flanders, E. E. Mack, R. Turner, M. B. Mirza, and T. Barkay, “Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments”, Environ Sci Technol, vol. 46, pp. 2684-2691,(2012).
96. Yu, R. Q., J. R. Reinfelder, M. E. Hines, and T. Barkay, “Mercury Methylation by the Methanogen Methanospirillum hungatei”, Appl Environ Microbiol, vol. 79, pp. 6325-6330,(2013).
97. Zhang, H., X. Feng, T. Larssen, G. Qiu, and R. D. Vogt, “In inland China, rice, rather than fish, is the major pathway for methylmercury exposure”, Environ Health Perspect, vol. 118, pp. 1183-1188,(2010a).
98. Zhang, H., X. B. Feng, T. Larssen, L. Shang, and P. Li, “Bioaccumulation of Methylmercury versus Inorganic Mercury in Rice (Oryza sativa L.) Grain”, Environ Sci Technol, vol. 44, pp. 4499-4504,(2010b).
99. Zhang, J., F. Wang, J. D. House, and B. Page, “Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation”, Limnology and oceanography, vol. 49, pp. 2276-2286,(2004).
指導教授 林居慶 審核日期 2015-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明