博碩士論文 101327017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.15.18.66
姓名 劉憲明(Shian-ming Liu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 寬能隙本質氫化非晶氧化矽(a-SiOx:H)薄膜光電特性與鈍化品質之關聯探討
(The investigation between photoelectric characteristics and passivation quality of wide band gap intrinsic hydrogenated amorphous silicon oxide (a-SiOx:H) thin films)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用電子迴旋共振化學氣相沉積(Electron cyclotron resonance chemical vapor deposition, ECR-CVD)製備本質氫化非晶氧化矽薄膜,相較於傳統電漿輔助化學氣相沉積(Plasma enhanced chemical vapor deposition, PECVD)其沉積速率較慢導致製程成本與時間增加,而ECR-CVD屬於高密度電漿具有較快沉積速率、無電極汙染、低離子轟擊等特點。本實驗調變微波功率、不同二氧化碳流量、氫稀釋比例、基板溫度等製程參數對a-SiOx:H薄膜特性影響,並且使用傅氏轉換紅外線光譜儀(FTIR)、橢圓偏光儀(Ellipsometer)、紫外可見光譜儀(UV-visible)量測薄膜結構特性與光電性質,最後以少數載子生命週期來判斷薄膜品質好壞。未來期望應用於異質接面太陽能電池上,以提升電池開路電壓。
本實驗選用磁場45/12/22 A與製程壓力5 mTorr條件下,使用FZ n-type單晶矽基板通入製程氣體為H2、SiH4、Ar與CO2來沉積雙面氫化非晶氧化矽薄膜。藉由少數載子生命週期(Lifetime)與表面載子複合速率(SRV)結果得知鈍化效果好壞,通入適當二氧化碳流量其氧含量可減少部份磊晶現象進而提升少數載子生命週期,但過多氧含量造成缺陷,增加薄膜中複合中心的產生。氧含量從0.14 at.(%)增加到10.91 at.(%),薄膜光學能隙從1.81 eV上升到2.32 eV。從實驗結果得知於H2/SiH4=0、微波功率500W、基板溫度140℃條件下得到較佳鈍化效果,且熱退火200℃-120sec情形下,少數載子生命週期從153.12 μsec提高到1.5 msec,表面複合速率從97.96 cm/s下降至10 cm/s。
摘要(英) In this study, the intrinsic hydrogenated amorphous silicon oxide (a-SiOx:H) thin films was prepared by Electron Cyclotron Resonance Chemical Vapor Deposition (ECR-CVD). High plasma density of ECR-CVD had many advantages: (1) faster deposition rate, (2) no electrode contamination, (3) low ion bombardment. However, conventional Plasma Enhanced Chemical Vapor Deposition (PECVD) had slower deposition rate caused the increase of costs and time. The process parameters effect of a-SiOx:H thin films such as microwave power, the flow of carbon dioxide, dilution ratio and substrate temperature were investigated. The thin films structure and optical properties were analyzed by Fourier transform infrared spectroscopy, Ellipsometer, and UV-visible. Finally, we determined the thin films quality by photo conductance lifetime tester. In addition, this material will be applied to amorphous silicon / crystalline silicon heterojunction solar cells and improved the open-circuit voltage of solar cells.
This experiment chose magnetic field configuration of 45/12/22 A and process pressure 5 mTorr to deposit sandwich a-SiOx:H thin films using H2, SiH4, Ar and CO2 as reactant gases. The carrier lifetime and Surface Recombination Velocity (SRV) of Si wafer could determine the passivation quality on FZ n-type silicon substrate. We found that by accessing appropriate carbon dioxide flow could improve lifetime because the oxide atoms decreased the phenomenon of partial epitaxy. However, the overflowing oxygen content caused to increase recombination center.
The experiment results showed that low dilution ratio, microwave power of 500W, substrate temperature of 140℃ had better passivation quality. The thin films optical band gap changed from 1.81 to 2.32 eV by increasing oxygen concentration from 0.14 to 10.91 at.(%). Thin films properties at H2/SiH4=0 could be optimized after annealing process under the temperature 200℃ for 120sec. The carrier lifetime 153.12 μsec increased to 1.5 msec and SRV 97.96 cm/s decreased to 10 cm/s.
關鍵字(中) ★ 本質氫化非晶氧化矽薄膜
★ 電子迴旋共振化學氣相沉積
★ 少數載子生命週期
★ 表面載子複合速率
關鍵字(英) ★ a-SiOx:H
★ ECR-CVD
★ Lifetime
★ SRV
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 研究背景 4
1-3 研究動機及方法 6
第二章 基本理論及文獻回顧 8
2-1 太陽能電池簡介 8
2-2 太陽能電池基本原理 10
2-3 鈍化層性質 12
2-4 薄膜沉積與介紹 14
2-4-1 薄膜沉積原理 14
2-4-2 化學氣相沉積(CVD) 18
2-4-3 氫化非晶矽薄膜介紹 20
2-4-4 氫化氧化矽薄膜介紹 25
2-5 載子生命週期復合機制 30
2-5-1 產生與復合 30
2-5-2 塊材復合 31
2-5-3 表面復合 34
第三章 研究方法與實驗設備 36
3-1 實驗方法 36
3-2 實驗步驟 37
3-2-1 試片基板清洗 37
3-2-2 試片製作 39
3-3 實驗裝置與量測 40
3-3-1 電子迴旋共振氣相沉積系統(Electron cyclotron resonance chemical vapor deposition, ECR-CVD) 40
3-3-2 傅氏轉換紅外線光譜儀 FTIR 45
3-3-3 橢圓偏光儀 Ellipsometer 48
3-3-4 紫外可見光譜儀 UV-visible 49
3-3-5 光電導生命週期量測儀 Photoconductance lifetime tester 50
3-3-6 快速熱退火 ARTS-RTA 52
第四章 實驗結果與討論 53
4-1 微波功率比薄膜特性影響 54
4-2 不同二氧化碳流量對薄膜特性影響 60
4-3 氫稀釋比例對薄膜特性影響 68
4-4 基板溫度對薄膜特性影響 74
4-5 熱退火處理對薄膜特性影響 80
第五章 結論 84
參考文獻 87
參考文獻 [1] 楊昌中,能源領域中的奈米科技研究,工業研究院能源與環境
研究所,民國95 年12 月。
[2] P. Würfel, Physics Of Solar Cells, Willey-VCH Verlag GmbH & Co.KgaA, 2005.
[3] 黃惠良,曾百亨,太陽電池,五南出版社,民國97 年12 月。
[4] 熊谷秀,科學發展月刊,349期,34-41頁,民國93 年。
[5] Swanson, R. M., “A vision for crystalline silicon photovoltaics”, Progress in Photovoltaics, Vol. 14, pp. 443-453, 2006.
[6] Parida, B. Iniyan, S. Goic, R., “A review of solar photovoltaic technologies”, Renewable & Sustainable Energy Reviews, Vol. 15, pp. 1625-1636, 2011.
[7] Microdevices, N., 太陽電池-日本的勝算, pp. 28, 2008.
[8] Hitoshi Sakata and Makoto Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, IEEE 4th World Conference, 2006.
[9] 顧鴻濤,太陽能電池元件導論,全威圖書有限公司,台北,民國97 年。
[10] Pelanchon, F., P. Mialhe, J. P. Charles, “The photocurrent and the open circuit voltage of a silicon solar cell”, Solar cells, Vol. 28(1), pp. 41-55, 1990.
[11] Y. Yamamoto, Y. Uraoka, T. Fuyuki, “Passivation Effect of Plasma Chemical Vapor Deposited SiNx on Single Crystalline Silicon Thin Film Solar Cells”, Japanese Journal of Applied Physics, Vol. 42, pp. 5135-5139, 2003.
[12] Burrows, M. Z., et al., “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation”, Journal of Vacuum Science & Technology A, Vol. 26(4), pp. 683-687, 2008.
[13] J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H. Yamamoto, T. Sato, A. Limmanee, A. Yamada, M. Konagai, “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics, Vol. 46(6A), pp. 3296-3300, 2007.
[14] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
[15] 莊達人,VLSI製造技術,高立圖書有限公司,民國85 年。
[16] M. S. Valipa, E. S. Aydil, D. Maroudas, “Atomistic calculation of the SiH3 surface reactivity during plasma deposition of amorphous silicon thin films”, Surface Science, Vol. 572, pp. 339-347, 2004.
[17] A. von Keudell and J. R. Abelson, “Direct insertion of SiH3 radicals into strained Si-Si surface bonds during plasma deposition of hydrogenated amorphous silicon films”, Physical Review B, Vol. 59, no. 8, Article ID 5791, 1999.
[18] H. Sterling and R. Swann, “Chemical vapor deposition promoted by rf discharge”, Solid-State Electronics, Vol. 8, pp.653-654, 1965.
[19] W. E. Spear and P. G. LeComber, “Investigation of the localized
state distribution in amorphous Si films”, Journal of Non-Crystalline Solids, Vol. 8-10, pp. 727-738, 1972.
[20] A. Triska, D. Dennison, and H. Fritzsche, “Hydrogen content in
Amorphous Ge and Si prepared by RF decomposition of GeH4 and SiH4”, Bulletin of American Physics Society, Vol. 20, pp. 392-397, 1975.
[21] M. B. Howard, “Hydrogen collision model of light induced
metastability in hydrogenated amorphous silicon”, Solid State Communications, Vol. 105, pp. 387-391, 1998.
[22] A. H. Mahan, D. L. Williamson, B. P. Nelson, R. S. Crandall, “Small angle X-ray scattering studies of microvoids in a-SiC:H and a-Si:H”, Solar Cells, Vol. 27, pp. 465-476, 1989.
[23] M. Stutzmann, W. B. Jackson and C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study”, Physical Review B, Vol. 32, pp. 23, 1985.
[24] D. Redfield and R. H. Bube, “Defects in amorphous silicon Extrinsic or intrinsic”, Journal of Non-Crystalline Solids, Vol. 137 & 138, pp. 215-218, 1991.
[25] D. Staebler and C. Wronski, “Reversible conductivity changes in
Discharge produced amorphous Si”, Applied Physics Letters, Vol. 31, pp. 292-294, 1977.
[26] Y. Ruoche and L. Kuixun, “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio frequency glow discharge”, 1997.
[27] M. Kishner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, Journal of Applied Physics, Vol. 62, pp. 2803-2811, 1987.
[28] Philipp H. R, “Optical properties for non-crystalline Si, SiO, SiOx and SiO2”, Journal of Physics and Chemistry of Solids, Vol. 32, pp. 1935-1945, 1972.
[29] H. Watanabe, K. Haga, and T. Lohner, “Structure of high photosensitivity silicon oxygen alloy films”, Journal of Non-Crystalline Solids, Vol. 1085-1088, pp. 164-166, 1993.
[30] Kushner M. J., “A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon”, Journal of Applied Physics, Vol. 63, pp. 2532-2551, 1988.
[31] Guizot J. L., Nomoto K. and Matsuda A., “Surface reactions during the a-Si:H growth in the diode and triode glow discharge reactors”, Surface Science, Vol. 244, pp. 22-38, 1991.
[32] M. J. Kerr and A. Cuevas, “Very low bulk surface recombination in oxidized silicon wafers”, Semiconductor Science and Technology, Vol. 17, pp. 35-38, 2002.
[33] M. J. Kerr and A. Cuevas, “Recombination at the interface between silicon and stoichiometric plasma silicon nitride”, Semiconductor Science and Technology, Vol. 17, pp. 166-172, 2002.
[34] M. Hofmann, J. Rentsch, R. Preu, “Dry plasma processing for industrial crystalline silicon solar cell production”, The European Physical Journal Applied Physics, Vol. 52, no. 1, Article ID 11101, 2010.
[35] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, O. Oota, Prog, “HIT cells high efficiency crystalline Si cells with novel structure”, Photovoltaics: Research and Applications, Vol. 8, pp. 503, 2000.
[36] M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas, R. Alcubilla, “Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx:H films”, Applied Physics Letters, Vol. 79, pp. 2199-2201, 2001.
[37] SANYO North America Corporation, Basic Structure of a HIT Cell,
http://us.sanyo.com/Solar/SANYO-HIT-Technology.
[38] H. Fujiwara, T. Kaneko, and M. Kondo, “Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells”, Applied Physics Letters, Vol. 91, no. 13, Article ID 133508, 2007.
[39] T. Mueller, S. Schwertheim, M. Scherff, and W. R. Fahrner, “High quality passivation for heterojunction solar cells by hydrogenated amorphous silicon suboxide films”, Applied Physics Letters, Vol. 92, no. 3, Article ID 033504, 2008.
[40] Haga, K. Yamamoto, K. Kumano, M. Watanabe, H., “Wide optical gap a-Si:O:H films prepared from SiH4 CO2 gas mixture”, Japanese Journal of Applied Physics, Vol. 25, pp. 39-41, 1986.
[41] H. Yamamoto, M. Ohtsubo, T. Sugiura, A. Limmanee, T. Sato, S. Miyajima, A. Yamada and M. Konagai, “Low Temperature Deposition of a-SiO:H films for high quailty rear surface passivation”, 22nd European Conference on Optical Communication, 2007. [42] F. Einsele, W. Beyer and U. Rau, “Analysis of sub-stoichiometric hydrogenated silicon oxide films for surface passivation of crystalline silicon solar cells”, Journal of Applied Physics, Vol. 112, Article ID 054905, 2012. [43] T. Mueller, S. Schwertheim and W. R. Fahrner, “Crystalline silicon surface passivation by high frequency plasma enhanced chemical vapor deposited nanocomposite silicon suboxides for solar cell applications”, Journal of Applied Physics, Vol. 107, Article ID 014504, 2010.
[44] T. Muellera, J. Wonga and A. G. Aberlea, “Heterojunction Silicon Wafer Solar Cells using Amorphous Silicon Suboxides for Interface Passivation”, Energy Procedia, Vol. 15, pp. 97-106, 2011.
[45] F. Einsele, W. Beyer and U. Rau, “Annealing studies of substoichiometric amorphous SiOx layers for c-Si surface passivation”, Physica Status Solidi (c), Vol. 7, pp. 1021-1024, 2010.
[46] J. Ge, M. Tang, J. Wong, Z. Zhang, T. Dippell, M. Doerr, O. Hohn, M. Huber, P. Wohlfart, A. G. Aberle and T. Mueller, “Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide”, International Journal of Photoenergy, Vol. 2014, Article ID 752967, 2014.
[47] D. L. Meier, M. R. Page, E. Iwaniczko, Y, Xu, Q. Wang, H. M. Branz, “Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon”, 17th NREL Crystalline Silicon Workshop, August, 2007.
[48] 張世育, 「矽量子點鑲嵌在氮化矽薄膜之合成與光學性質研究」, 中華大學,碩士論文,民國94 年。
[49] T. S. Horanyi, T. Pavelka, P. Tutto, “In situ bulk lifetime measurement on silicon with a chemically passivated surface”, Applied Surface Science, Vol. 63, pp. 306-311, 1993.
[50] T. Nishimoto, M. Takai, H. Miyahara, M. Kondo and A. Matsuda et al., “Amorphous silicon solar cells deposited at high growth rate”, Journal
Non-Crystalline Solids, Vol. 299, pp. 1116–1122, 2002.
[51] S. Guha, J. Yang, S. Jones, Y. Chan and D. Williamson et al., “Effect of microvoids on initial and light-degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Applied Physics Letters, Vol. 61, pp. 1444-1447, 1992.
[52] Lucovsky G., et al., “Oxygen bonding environments in glow discharge deposited amorphous silicon hydrogen alloy films”, Physical Review B, Vol. 28, pp. 3225–3233, 1983.
[53] G. Jellison, F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region”, Applied Physics Letters, Vol. 69, pp. 371-378, 1996.
[54] 樊洁平,劉惠民,田強,「光吸收介質的吸收係數與介電函數虛部的關係」,大學物理,28卷,3期,民國98 年。
[55] S. Kageyama, M. Akagawa and H. Fujiwara, “Dielectric function of a-Si:H based on local network structures”, Physical Review B, Vol. 83, Article ID 195205, 2011.
[56] C. Piamonteze, A. C. Iniguez, L. R. Tessler, “Environment of Erbium in a-Si:H and a-SiOx:H”, Physical Review Letters, Vol. 81, no. 21, 1998.
[57] C. C. Tsai, G. B. Anderson, R. Thompson and B. Wacker, “Control of silicon network structure in plasma deposition”, Journal Non Crystalline Solids, Vol. 114, pp. 151-153, 1989.
[58] A. Matsuda, “Formation kinetics and control of microcrystallite in uc-Si:H from glow discharge plasma”, Journal Non-Crystalline Solids, Vol. 59 & 60, pp. 767-774, 1983.
[59] K. Nakamura, K. Yoshino, S. Tekeoka and I. Shimizu, “Roles of atomic hydrogen in chemical annealing”, Japanese Journal of Applied Physics, Vol. 34, pp. 442-449, 1995.
[60] A. Szekeres, M. Gartner, F. Vasiliu, M, Marinov, G. Beshkov, “Crystallization of a-Si:H films by rapid thermal annealing”, Journal of Non-Crystalline Solid, Vol. 227, pp. 954-957, 1998.
指導教授 利定東(Ting-tung Li) 審核日期 2014-9-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明