博碩士論文 101328001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.145.77.82
姓名 葉哲均(YEH-CHE-CHUN)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 甘胺酸-硝酸燃燒合成法製備固態氧化物燃料電池陰極材料La0.8Sr0.2MnO3、La0.6Sr0.4Co0.2Fe0.8O3與其電化學性質之研究
(Synthesis and electrochemical properties of La0.8Sr0.2MnO3 and La0.6Sr0.4Co0.2Fe0.8O3 by glycine-nitrate combustion method)
相關論文
★ 鋁鈧濺鍍薄膜中鈧含量對其微結構、光反射性與腐蝕性質之影響★ 鍍金發泡鎳質子交換膜燃料電池之電池操作溫度、陰極加濕溫度、陰極計量比對其性能影響之研究
★ 1kW質子交換膜商用電堆中四個特徵區段單電池之電化學交流阻抗圖譜診斷★ 碳酸鹽沉澱製備Ba0.5Sr0.5Co0.8Fe0.2O3 及其在滲透銀前後之陰極特性比較
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以甘胺酸-硝酸燃燒合成法(Glycine-nitrate combustion method)製備鑭、鍶、錳氧化物(La0.8Sr0.2MnO3;LSM)與鑭、鍶、鈷、鐵氧化物(La0.6Sr0.4Co0.2Fe0.8O3;LSCF)陰極材料,並探討前驅溶液在不同pH值、甘胺酸與硝酸之比例(g/n比)與粉體在不同煆燒溫度下之結晶結構、表面形貌、組成、熱性質等,並製成固態氧化物燃料電池(SOFC)全電池,進行電化學測試,以評估作為燃料電池陰極的可行性。
本研究利用X光繞射分析儀(XRD)探討合成出之陰極材料粉體結晶結構;使用掃描式電子顯微鏡(SEM)來觀察其微結構、表面形貌;能量散佈分析儀(EDS)進行元素半定量分析;利用熱重分析儀(TGA)來分析陰極粉體在高溫下之變化,最後再將陰極粉體製成全電池,以直流電極化曲線(I-V curve)和電化學交流阻抗頻譜圖(EIS)來測試電池的性能。
研究結果顯示,前驅溶液經過適當的pH值控制後,能夠增加金屬陽離子的錯合能力,使材料合成時生成之雜相(Impurity phase)減少。且g/n比為1.0以及1.5時,能夠形成純相之LSM與LSCF結構,經過1000oC的煆燒後得到奈米等級(約200nm)與具備多孔性(Porous)之陰極材料粉體。全電池性能測試結果顯示,LSM在g/n比1.0、操作溫度850oC具有最高輸出電流密度:469.474mA/cm2與最高功率密度:209.850mW/cm2。LSCF在高溫燒結下易與電解質材料(YSZ)發生反應,形成SrZrO3絕緣相,導致電池輸出性能大幅下降。
摘要(英) Glycine-nitrate combustion method was used to prepare the precursor which could be calcined to form La0.8Sr0.2MnO3 (LSM) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) as the cathode catalyst materials of the solid oxide fuel cell(SOFC). The effect of pH value from precursor, glycine to nitrate ratio(g/n ratio) and calcination temperature on the crystalline structure, morphology, composition, thermal and electrochemical properties were of interest.
The crystal structure was determined by X-ray diffractmeter (XRD)The surface morphology of the oxide powders was examined through field emission scanning electron microscope (FE-SEM) and their composition was analyzed by the equipped energy dispersive spectrophotometer (EDS). The thermal property was determined by the thermal gravimetric analysis (TGA). After makng the calcined oxides as the cathode catalysts in a single cell. I-V polarization test and the electrochemical impedance were conducted to evaluate the electrochemical performance.
LSM and LSCF have successfully been developed after the specific pH value and g/n ratio controlled. All the powders prepared by glycine-nitrate combustion method were nanosized. The electrochemical test showed the LSM with maximum current density: 469.474mA/cm2 and the maximum power density: 209.850mW/cm2 when the g/n ratio was equal to 1.0. Additional diffraction peaks assigned to SrZrO3 phase were found after firing the LSCF-YSZ mixture at 900 and 1000ºC indicating a reaction between LSCF and YSZ which is stronger as the temperature increases.
關鍵字(中) ★ 固態氧化物燃料電池
★ 陰極材料
★ 燃燒合成法
★ 電化學
關鍵字(英) ★ SOFC
★ cathode
★ combustion
★ electrochemistry
論文目次 摘要 i
Abstract iii
表目錄 vi
圖目錄 viii
第一章 簡介 1
1.1 前言 1
1.2 研究動機與目的 3
第二章 理論基礎與文獻回顧 5
2.1 燃料電池簡介 5
2.1.1 固態氧化物燃料電池原理 與簡介 6
2.1.2 固態氧化物燃料電池元件材料 7
2.1.3 固態氧化物燃料電池之支撐結構 10
2.2 陰極材料之性質 11
2.2.1 鈣鈦礦結構( Pervoskite )[14] 11
2.2.2 三相界(TPB)[17] 13
2.3 陰極材料常用之合成法 14
2.3.1 固態反應法[18] 14
2.3.2 共同沉澱法[19] 14
2.3.3水熱法[20] 15
2.3.4 溶膠凝膠法[18] [21] 16
2.3.5 燃燒合成法[22] 16
2.4電化學原理-直流電極化曲線(I-V Curve)原理 17
2.5電化學原理-電化學交流阻抗(EIS)基本原理 20
2.6文獻回顧 24
2.6.1 固態氧化物燃料電池陰極文獻回顧 24
2.6.2 燃燒合成法對於材料結構文獻回顧 26
2.6.3 燃燒合成法對於材料電性與電化學交流阻抗文獻回顧 29
第三章 實驗方法 30
3.1 實驗藥品與材料 30
3.2 實驗製備 30
3.2.1 陰極材料合成與分析 30
3.2.2 陰極膏製備 31
3.2.3 全電池製備 32
3.3 實驗儀器與設備 33
3.3.1 X光繞射儀 (X-Ray Diffractormeter XRD) 33
3.3.2 掃描式電子顯微鏡(FE-SEM)與能量散射光譜儀(EDS) 34
3.3.3 熱重分析儀(TGA) 35
3.3.4直流極化分析(I-V Curve) 36
3.3.5 交流阻抗頻譜分析(EIS) 36
第四章 實驗結果 36
4.1 粉體之XRD分析結果 37
4.2 粉體之SEM表面形貌分析結果 40
4.3 粉體之EDS半定量分析結果 43
4.4 粉體TGA熱分析結果 44
4.5 直流電極化曲線(I-V curve)分析結果 45
4.6 直流極化曲線(I-P curve)分析結果 46
4.7 電化學交流阻抗(EIS)分析結果 47
4.8 等效電路圖模型(ECM)模擬 48
第五章 實驗討論 49
5.1 不同pH值之影響討論 49
5.2 不同g/n比之影響討論 50
5.3 材料熱分析討論 52
5.4 全電池性能討論 53
5.4.1 LSM陰極材料之全電池性能討論 53
5.4.2 LSCF陰極材料之全電池性能討論 55
第六章 結論與未來展望 57
6.1 結論 57
6.2 未來展望 58
第七章 參考文獻 59
參考文獻 [1] W.R. Grove, “On voltaic series and the combination of gases by platinum” Philosophical Magazine and Journal of Science, Series 3, 14, pp. 127–130 , 1839
[2] Yunus Çengel, “Thermodynamics, 7e” Michael A. Boles, North Carolina State University—Raleigh, ISBN: 007352932x
[3] http://fuelcelltoday.com/media/1889744/fct_review_2013.pdf
[4] T. S. John Irvine • Paul Connor, “Solid Oxide Fuels Cells:Facts and Figures, Past, Present and Future Perspectives for SOFC Technologies” Green Energy and Technology, Springer, 2013
[5] H. S. Kim, J. H. Kang, I. Hyun. Oh,C. H.Jeong, S. J.Boo, J. H.Jo, H. S. Kim, “A Study of LSCF Cathode Material Prepared by Pechini Process for IT-SOFCs” International Conference on Power and Energy Systems, Lecture Notes in Information Technology, 13, 2012
[6] Z. Shao, W. Zhou, Z. Zhu, “Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells” Progress in Materials Science, 57, 804–874, 2012
[7] Taroco, H. A., Santos, J. A. F., Domingues, R. Z. and Matencio, T., “Ceramic Materials for Solid Oxide Fuel Cells” Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications, 19, 2011
[8] 衣寶廉,燃料電池-原理與應用,初版,五南圖書出版股份有限公司, 2005
[9] 黃鎮江,燃料電池,修訂版,全華科技圖書股份有限公司,2004
[10] J.Richter, P. Holtappels, T. Graule, T. Nakamura, L. J. Gauckler, “Materials design for perovskite SOFC cathodes” Monatsh Chem, 140:985–999, 2009
[11] S.C. Singhal, K. Kendall , “High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications “ Elsevier Science (2004).
[12] N. Q. Minh, J. Am, ” Ceramic Fuel Cells” Ceram. Soc, 76(3), 563, (1993)
[13] N.Q. Minh, “Solid oxide fuel cell technology—features and applications” Solid State Ionics, 174, 271–277, 2004
[14] C. Li, K.C.K. Soh, P. Wu, “Formability of ABO3 perovskites” Journal of Alloys and Compounds 372, 40–48, 2004
[15] T. Ishihara, “Perovskite Oxide for Solid Oxide Fuel Cells”, Fuel Cells and Hydrogen Energy, ISBN: 978-0-387-77707-8, 2009
[16] H. Arai, T. Yamada, K. Eguchi, T. Seiyama, “Catalytic combustion of methane over various perovskite-type oxides” Applied Catalysis, 26, 265-276, 1986
[17] S. B. Adler, “Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes”, Chem. Rev, 104, 4791-4843, 2004
[18] U. Schubert, N. Husing, “Synthesis of inorganic materials”, second, revised and updated edition, ISBN: 978-3-527-31037-1, 2004
[19] C. T. Wu, “Preparation and Characterization of Lanthanum-Indium (Gallium)-Zirconium Oxides by Chemical Coprecipitation”, National Cheng Kung University, 2003.
[20] D. H. Huang, “Synthesis and Electrochemical Properties of Sm-doped and Bi-doped Cerium Oxides Prepared by a Low Temperature Hydrothermal Method for SOFC Electrolyte”, National Taiwan Normal University, 2004.
[21] C. H. Wu, “Modified combustion synthesis method to prepare nano (La0.7Sr0.3)MnO3 electrode powders for enhancing fatigue properties of Pb(Zn,Nb,Zr,Ti)O3 material system”, National Taipei University of Technology, 2006.
[22] W. Zhou, Z. Shao, R. Ran, H. Gu, W. Jin, and N. Xu, “LSCF nanopowder from Cellulose–Glycine-Nitrate Process and its application in Intermediate-Temperature Solid-Oxide Fuel Cells”, The American Ceramic Society, 91, 1155-1162, 2008.
[23] EG & G Technical Services Inc., Fuel Cell Handbook 7th Eds, U.S. , Department of Energy, 2004
[24] S. M. Haile, “Fuel cell materials and components” Acta Materialia, 51, 5981, 2003
[25] R. O. Hayre, S. W. Cha, W. Colella, F. B. Prinz, “Fuel Cell Fundamentals” Wiley, ISBN: 978-0-470-25843-9, 2008
[26] E. Povoden-Karadeniz, ”Thermodynamic Database of the La-Sr-Mn-Cr-O Oxide System and Applications to Solid Oxide Fuel Cells” Swiss Federal Institute Of Technology Zurich, degree of doctor, 2008
[27] N. Y. Hsu, S. C. Yen, K. T. Jeng, C. C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectivesOriginal” Journal Power Sources, 161, 232, 2006
[28] Q. A. Huanga, R. Hui, B. Wang, J. Zhang,” A review of AC impedance modeling and validation in SOFC diagnosis” Electrochimica Acta, 52, 8144-8164, 2007
[29] Z. Shao, W. Zhou, Z. Zhu, “Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells” Progress in Materials Science, 57, 804, 2012
[30] M. Zhi, G. Zhou, Z. Hong, J. Wang, R. Gemmen, K. Gerdes, A. Manivannan, D. Mae, N. Wu, “Single crystalline La0.5Sr0.5MnO3 microcubes as cathode of solid oxide fuel cell” The Royal Society of Chemistry, Energy Environ, 4, 139-144, 2011
[31] J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, H. Tagawa, “Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ” Solid State Chem. 80, 102, 1989
[32] F. Tietz, V.A.C. Haanappel, A. Mai, J. Mertens, D. Stover, “Performance of LSCF cathodes in cell tests” Journal of Power Sources, 156, 20–22, 2006
[33] L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, G.J. Exarhos, “Glycine nitrate combustion synthesis of oxide ceramic powders”, Materials Letters,10(1–2):6–12, 1990
[34] C. C. Hwang, T.Y. Wu, J. Wan, J.S. Tsai, “Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders”, Materials Science and Engineering, B 111, 49–56, 2004
[35] B. Liu, Y. Zhang, “Ba0.5Sr0.5Co0.8Fe0.2O3 nanopowders prepared by glycine–nitrate process for solid oxide fuel cell cathode”, Journal of Alloys and Compounds, 453, 418–422, 2008
[36] E. Thomas, S. H. Ehrman and H. J. Hwang, “Synthesis of La0.8Sr0.2CrO3 nano powder by glycine nitrate process”, Proceedings Power MEMS, 471-474, 2009
[37] C.M. Chanquı´a, J.E. Vega-Castillo, A.L. Soldati, H. Troiani, A. Caneiro, “Synthesis and characterization of pure-phase La0.75Sr0.25Cr0.5Mn0.5O3- δnanocrystallites for solid oxide fuel cell applications”, J Nanopart Res, 14:1104, 2012
[38] T.W. Chiu, B.S. Yu, Y.R. Wang, K.T. Chen, Y.T. Lin, “Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process”, Journal of Alloys and Compounds 509, 2933–2935,2011
[39] K.Tabata and S.Kohiki, “Catalytic properties and surface states of La1-x(Th, Sr)xCoO3”, J.Materials Science, 22, 3781, 1987
[40] W. Huan, Z. Hua, J. H. Jian, Z. W. Wen, “Effect of Fuel Amount on Synthesis of Gd0.8Sr0.2CoO3-δ Cathode Material by Glycine- nitrate Process” Journal of Inorganic Materials, 28, 8, 2013
[41] Q. A. Huanga, R. Hui, B. Wang, J. Zhang,” A review of AC impedance modeling and validation in SOFC diagnosis” Electrochimica Acta, 52, 8144-8164, 2007
[42] S. R. JAIN, K. C. ADIGA, V. R. PAl VERNEKER,” A New Approach to Thermochemical Calculations of Condensed Fuel-Oxidizer Mixtures” COMB USTION AND FLAME, 40: 71-79, 1981
[43] Z. Shao, W. Zhou, Z. Zhu,” Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells” Progress in Materials Science, 57, 804–874, 2012
[44] Y. H. Lim, J. Lee, J. S. Yoon, C.E. Kim, H. J. Hwang,” Electrochemical performance of Ba0.5Sr0.5CoxFe1−xO3−δ (x = 0.2–0.8) cathode on a ScSZ electrolyte for intermediate temperature SOFCs” Journal of Power Sources, 171, 79–85, 2007
[45] L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas and G. J. Exarhos,” Glycine-nitrate combustion synthesis of oxide ceramic powders” MATERIALS LETTERS, Volume 10, number 1,2, 1990
[46] A. S. Mukasyan, P. Epstein, P. Dinka, “Solution combustion synthesis of nanomaterials” Proceedings of the Combustion Institute, 31, 1789–1795, 2007
[47] R. R Kondakindi, “Effect of glycine concentration on the properties of LaCoO3 perovskite prepared by the glycine-nitrate process” Indian Journal of Chemistry, Vol. 51A, 931-936, 2012
[48] A. Mai, V. A.C. Haanappel, S. Uhlenbruck, F. Tietz, D. Stover, “Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells Part I. Variation of composition” Solid State Ionics, 176, 1341 – 1350, 2005
[49] H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, ” Ln0.4Sr0.6Co0.8Fe0.2O3−δ(Ln=La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells” Solid State Ionics, 117, 277–281, 1999
[50] P. Martínez, M. López, S. Bautista, D. S. García, R. Morales, C. Vazquez, P. Núñez, “Effect of a CGO buffer layer on the performance of (La0.6Sr0.4)0.995Co0.2Fe0.8O3-δ cathode in YSZ-Based SOFC” Bol. Soc. Esp. Ceram. V. 49, 1, 15-22, 2010
指導教授 林景崎(Lin, Jing-Chie) 審核日期 2014-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明