博碩士論文 101328004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.235.147.50
姓名 洪肇穎(Chao-Ying Hung)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 雷射還原石墨烯之場發射特性探討
(Study of Field Emissive Characteristics of Laser-reduced Graphene Oxides)
相關論文
★ 碳化矽光輔助化學處理之表面特性探討★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 崁入式網印金屬網格電極製作於有機發光二極體之應用
★ 三氧化鉬晶體薄膜之大氣環境製備技術開發及特性探討★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ AISI-H13工具鋼之雷射衝擊強化處理與衝擊壓力檢測★ 多功能崁入式金屬網格透明電極技術開發
★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作★ 複數光源二步驟照射法應用於無鹼玻璃之無裂痕雷射加工
★ 雷射直寫草酸銀複合墨水製作金屬銀網格透明電極★ 靜電紡絲結合選擇性無電鍍沉積製作可撓式金屬網絡透明電極
★ 飛秒雷射直寫技術應用於SU8與其複合材料之微結構製作與檢測★ 雷射誘發電漿微加工技術應用於玻璃微針 尖陣列之製作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本研究主要探討氧化石墨烯(Graphene oxides, GOs)與氧化石墨烯摻雜銀奈米粒子複合材料(Composites of graphene oxides and Silver nanoparticles, GOs-AgNPs)在雷射剝蝕還原(Laser ablation and reduction, LAR)作用後形成還原石墨烯(rGOs)與還原石墨烯-金屬奈米粒子複合物(rGOs-AgNPs)之場發效應特性,接著引入聚乙烯醇-硝酸銀(Composites of Polyvinyl alcohol and Silver nitrate,PVA-AgNO3 )當作導電層材料,並且探討相關機制與特性。
第一部分實驗為GO還原成rGO後具有導電薄膜並同時當作場發源,接著摻雜銀奈米粒子作修飾的研究,GO在雷射功率31.73 W作用還原成rGO後,片電阻~2.2 kΩ/□,此時有一相對低的啟動電場 (Turn-on field, Eturn-on @ J=10 μA/cm2) ~4.21 V/μm,對應的場發射增強因子 (field enhancement factor, β) ~1831。接著引入銀奈米粒子做修飾,當銀奈米粒子之氧化石墨烯薄膜(GO-AgNPs)在摻雜濃度為4.25×10-4 M的情況下,經雷射拔氧還原後,片電阻~1.5 KΩ/□,場發射特性Eturn-on降低至4.17 V/μm,對應的β~2989,確定經由添加銀奈米粒子後降低了啟動電壓,以及提高了場發射增強因子。
第二部分則是增加了PVA-AgNO3當作導電層的使用,並將GO轉印於PVA-AgNO3上,接著雷射功率31.73 W作用還原成rGO,而其中PVA-AgNO3加熱還原成PVA/AgNPs後,導電層片電阻為~0.1 Ω/□。;而場發射特性 Eturn-on 從4.21 V/μm下降至1.88 V/μm,β由1831上升至6363。;最後實驗將銀奈米粒子以及導電層同時應用,GO-AgNPs轉印於PVA-AgNO3上,銀奈米粒子摻雜濃度為4.25 x10-4 M 的情況下,雷射功率31.73 W作用還原成rGO/AgNPs,場發射特性Eturn-on 由4.17 V/μm下降至1.6 V/μm,β由2989上升至7962,經過增加導電層以及摻雜銀奈米粒子這兩種方式修飾獲得的實驗參數為本實驗的最佳值。
關鍵字:
氧化石墨烯、雷射、銀奈米粒子、場發射效應、聚乙烯醇-硝酸銀
摘要(英) Field emission properties of a reduced graphene oxide (rGO) thin film were characterized in this study. The rGO thin film was prepared based on the following steps. Initially, commercially available graphene oxide (GO) sheets were uniformly dispersed in a solvent. The solution was then deposited upon a glass substrate to form a GO thin film. A pulsed laser was employed to irradiate on the GO thin film. Due to its absorption of the incident laser energy, the GO thin film was instantly increased to an elevated temperature and thermally reduced into an rGO thin film. The field-emission properties are mainly dependent upon the surface morphology and conductivity of the resultant rGO thin film. By varying both the laser power and the laser exposing patterns, the field-emission characteristics of the rGO thin film could be regulated. Results show a laser-annealed rGO thin film with the turn-on field, Eturn-on, of 4.21 V/μm and field enhancement factor, β, of 1831 can be obtained using laser power of 31.73 W. In addition to the rGO thin film, the field-emission properties of a thin film of rGO sheets blending with Ag nanoparticles, rGO-AgNPs thin film, were also examined in this study,the rGO-AgNPs thin film with the turn-on field, Eturn-on, of 4.17 V/μm and field enhancement factor, β, of 2989 can be obtained using laser power of 31.73 W.
Here a thin film initially, containing GO sheets, polyvinyl alcohol (PVA) and silver nitrate (AgNO3) had to be prepared prior to the subsequent laser irradiation. It was accomplished by mixing the solution of GO sheets with both the PVA and AgNO3 solutions. The existence of the Ag nanoparticles enhanced the conductivity of the resultant rGO thin film of the field emission properties: the turn-on field was reduced to 1.88 V/μm and the field enhancement factor was increased to 6363. rGO-AgNPs thin film with the turn-on field, Eturn-on, of 1.6 V/μm and field enhancement factor, β, of 7962 can be obtained using laser power of 31.73 W.
關鍵字(中) ★ 氧化石墨烯
★ 聚乙烯醇-硝酸銀
★ 銀奈米粒子
★ 場發射效應
★ 雷射
關鍵字(英) ★ graphene oxides
★ PVA-AgNO3
★ AgNPs
★ Field emission
★ laser reduction
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
Chapter 1 緒論 1
1-1 前言 1
1-2 研究背景、目的與方法 3
Chapter 2 文獻回顧與基礎理論 4
2-1 石墨烯 4
2-1-1 石墨烯檢測 5
2-1-2 加熱還原石墨烯 7
2-1-3 高溫與化學還原比較 8
2-1-4 雷射與石墨烯 10
2-2 場發射理論 13
2-2-1 表面能障與功函數 14
2-2-2 電子場發射 Fowler-Nordheim方程式 (F-N方程式) 15
2-3 石墨烯應用於電子場發射效應 18
2-3-1 直接成長石墨烯 19
2-3-2 非成長型-還原氧化石墨烯 24
2-4 傳承與創新 35
Chapter 3 實驗 36
3-1 實驗用品 36
3-2 實驗設計與目標 42
3-2-1 導電層材料選用說明: 43
3-3 元件製作 44
3-3-1 基板處理 44
3-3-2 銀奈米粒子製備 44
3-3-3 GO薄膜以及GO-AgNPs複合薄膜製備 44
3-3-4 聚乙烯醇-硝酸銀(PVA-AgNO3)複合物及GO膜轉印 45
3-3-5 雷射還原氧化石墨烯製備場發射源 46
3-3-6 雷射還原氧化石墨烯場發射量測 46
3-3-7 元件製作流程整理 47
Chapter 4 實驗結果與討論 48
4-1 材料製備結果 48
4-1-1 銀奈米粒子製備與氧化石墨烯-銀奈米粒子複合材料 48
4-1-2 聚乙烯醇-硝酸銀 複合材料 51
4-2 Nd:YAG 雷射剝離還原 56
4-2-1 片電阻變化 57
4-3 GO-AgNPs成份分析 58
4-3-1 雷射作用後 XPS元素分析 58
4-3-2 雷射作用後 XPS、FESEM 對照分析 62
4-4 表面形貌分析 64
4-4-1 雷射作用後rGO表面形貌分析 64
4-4-2 PVA-AgNO3表面形貌分析 69
4-5 Raman光譜圖 72
4-5-1 GO Raman光譜圖 72
4-5-2 GO-AgNPs Raman光譜圖 73
4-6 場發射特性 75
4-6-1 GO在雷射還原後場發特性 76
4-6-2 GO-AgNPs在雷射還原後場發特性 79
4-6-3 GO 轉印於PVA-AgNO3 複合薄膜上 83
4-6-4 GO、GO-AgNPs 轉印於PVA-AgNO3 複合薄膜上 84
Chapter 5 結論與未來工作 85
5-1 結論 85
5-2 未來工作 86
參考文獻 88
附錄一 GO-AgNPs XPS全譜圖 94
附錄二 GO-AgNPs XPS C1s分峰圖 98
附錄三 AFM 相位圖原理 101
附錄四AFM與Dektak 表面量測差異 103
附錄五拉曼光譜分峰模擬測試 105
附錄六拉曼光譜2D bane 106
碩士論文口試之口試委員問題回覆 108
參考文獻 [ 1] R. H. Fowler and L. W. Nordheim, “Electron Emission in Intense Electric Fields,”. L. Proc. R. Soc. London A 1928, 119,173−181.
[ 2] Y. Sun1, Y. Song, D. H. Shin, K. N. Yun, S. Jeon, J. Kim, Y. Saito and C J Lee1, “Fabrication of carbon nanotube emitters on the graphite rod and their high field emission performance,” Appl. Phys. Lett.104,043104 (2014).
[ 3] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai,
“Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, 283 (1999) 512-514.
[ 4] O. M. Küttel, O. Gröning, C. Emmenegger, L. Nilsson, E. Maillard, L. Diederich, and L. Schlapbach, “Field emission from diamond, diamond-like and nanostructured carbon films,”Carbon,37(1999) 745-752.
[ 5] 甘明吉, “奈米尺度碳材料之電子發射特性,”國立成功大學材料科學及工程研究所博士論文(2003).
[ 6] G. Fursey, I. Brodie, P. Shwoebel, “Field Emission in Vacuum Microelectronics,” Kluwer Academic / Plenum Publishers(2005).
[ 7] 成會明、張勁燕, “奈米碳管,”五南圖書出版股份有限公司(2004).
[ 8] A.K. Geim and K.S. Novoselov, “ The rise of graphene,” Nature Materials 6, 183 - 191 (2007).
[ 9] A. Malesevic, R. Kemps, A. Vanhulsel, M. P Chowdhury, A. Volodin,“Field emission from vertically aligned few-layer graphene,” J. Appl. Phys. 104, 084301 2008.
[ 10] J. L. Qi, X. Wang, W. T. Zheng, H. W. Tian, C. Q. Hu, Y. S. Peng, “Ar plasma treatment on few layer graphene sheets for enhancing their field emission properties ,” J. Phys. D: Appl. Phys. 43 (2010) 055302.
[ 11] Y. Zhang, J. Du, S. Tang, P. Liu, S. Deng, J. Chen ,N. Xu , “Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology,” Nanotechnology, (2012), 23, 015202.
[ 12] S. M. Wanga, H. W. Tiana, Q. N. Menga, C. M. Zhaoa, L. Qiaob, Y. F. Binga, C. Q. Hua, W. T. Zhenga, Y. C. Liuc, “Field emission properties of vertically aligned thin-graphite sheets/graphite-encapsulated Cu particles,”( 2012) Appl. Surf. Sci. 258 6930.
[ 13] Qian M, Feng T, Ding H, Lin L F, Li H B, Chen Y W, Sun Z, “Electron field emission from screen-printed graphene films,”2009 Nanotechnology 20 425702.
[ 14] C. Wu, F. Li, Y. Zhang, T. Guo , “Field emission from vertical graphene sheets formed by screen-printing technique,” Vacuum, 94 (2013), pp. 48–52.
[ 15] G. Eda, H. E. Unalan, N. Rupesinghe, G. A. J. Amaratunga, M. Chhowalla, “ Field emission from graphene based composite thin films ,”Appl. Phys. Lett. 2008 ,93, 233502.
[ 16] T.T. Baby, R. Sundara, “A facile synthesis and field emission property investigation of CO3O4 nanoparticles decorated graphene,” Mater. Chem. Phys. 135 (2012) 623-627.
[ 17] T.T. Baby, R. Sundara, “Experimental study on the field emission properties of metal oxide nanoparticle–decorated graphene,” J. Appl. Phys 111, 034311 (2012).
[ 18] S. Zhang, Y. Zhang, S. Huang, H. Liu, P. Wang, H. Tian, “First-Principles Study of Field Emission Properties of Graphene-ZnO Nanocomposite ,” J. Phys. Chem. C 114, 19284 (2010).
[ 19] K. Wang, T. Feng, M. Qian, H. Ding, Y. Chen, Z. Sun, “The field emission of vacuum filtered graphene films reduced by microwave,” Appl. Sur. Sci. 257 (2011) 5808–5812.
[ 20] H.J. Jeong, H.Y. Kim, H.D. Jeong, S.Y. Jeong, J.T. Han and G.-W. Lee, “Arrays of vertically aligned tubular-structured graphene for flexible field,” J. Mater. Chem., 2012, 22, 11277.
[ 21] C. Wu, F. Li, Y. Zhang, T. Go, “Effectively improved field emission for graphene film by mechanical surface modification,” Thin Solid Films, 544 (2013), pp. 399–402 .
[ 22] G.M. Viskadouros, M.M. Stylianakis, E. Kymakis, E. Stratakis, “Enhanced Field Emission from Reduced Graphene Oxide Polymer Composites,”Appl. Mater. Interfaces 2014, 6, 388−393.
[ 23] H.J. Jeong, H.Y. Kim, H.D. Jeong, S.Y. Jeong, J.T. Han , G.W. Lee, “Arrays of vertically aligned tubular-structured graphene for flexible field,” J. Mater. Chem. (2012) 22, 11277–11283.
[ 24] H.A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen , “ Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano 2 (3), 463 (2008).
[ 25] A.C. Ferrari, J.C. Meyer, V. Scardaci,C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, “Raman Spectrum of Graphene and Graphene Layers,” 2006, Phys. Rev. Lett. 97, 187401..
[ 26] A. C. Ferrari1, D. M. Basko, “ Raman spectroscopy as a versatile tool for studying the properties of graphene ,” Nat. tech. , 8 , April , 2013.
[ 27] I. K. Moon, J. Lee, R. S. Ruoff, H. Lee, “ Reduced graphene oxide by chemical graphitization ,” Nat Comm, 1 (1) (2010), pp. 73–78.
[ 28] S. H. Huh, “Physics and Applications of Graphene Experiments,” InTech (2011).
[ 29] J. Z. Xu, R. Pan, Y. W. Chen, X. Q. Piao, M. Qian, T. Feng and Z. Sun, “Electron field emission from screen-printed graphene/DWCNT composite films ,” J. Alloys Compd., 2013, 551, 348–351.
[ 30] Z.S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, H.M. Cheng, “Field Emission of Single-Layer Graphene Films Prep.ared by Electrophoretic Deposition,” Adv. Mater. 2009, 21, 1756–1760
[ 31] Z.J. Li, B.C. Yang, G.Q. Yun, S.R. Zhang, M. Zhang, M.X. Zhao, “Synthesis of Sn nanoparticle decorated graphene sheets for enhanced field emission properties,” J. Alloys Compd.,550 (2013) 353–357.
[ 32] C. Wu, F. Li, Y. Zhang, L. Wang, T. Guo,“Formation and field emission of patterned zinc oxide-adhering graphene cathodes,” Vacuum 89 (2013) 57e61.
[ 33] Jun, L.; Chen, J.; Luo, B.; Yan, X.; Xue, Q. ,“The improvement of the field emission properties from graphene films: Ti transition layer and annealing process,” AIP Adv. 2 2012,022101..
[ 34] T.T. Baby, S. Ramaprabhu,“Cold field emission from hydrogen exfoliated graphene composites,” Appl. Phys. Let. 98, 183111 2011.
[ 35] I. Sameera, R. Bhatia, J. Ouyang, V. Prasad, R. Menon,“ Electron field emission from reduced graphene oxide on polymer film,”Appl. Phys. Let. 102, 033102 (2013).
[ 36] Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P. C. ,“ Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films,”Nano Lett. 2006, 6, 2667.
[ 37] Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. ,“ Physics Reports Raman spectroscopy in graphene,”Phys. Rep. 2009, 473, 51.
[ 38] You, Y. M.; Ni, Z. H.; Yu, T.; Shen, Z. X. ,“ Edge determination of graphene by Raman spectroscopy,” Appl. Phys. Lett. 2008,93, 163112.
[ 39] O. Akhavan, E. Ghaderi, S. Aghayee,Y. Fereydooni and A. Talebi,“The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy,” J. Mater. Chem., 2012, 22, 13773.
[ 40] S. Dhar, A. Roy Barman, G. X. Ni et al. ,“A new route to graphene layers by selective
laser ablation,” J. AIP Advances,2011,1 (2): 022 109.
[ 41] M. Lenner, A. Kaplan, C. Huchon et al. ,“Ultrafast laser ablation of graphite ,” J. Phys.
Rev. B, 2009,79 (18): 184105.
[ 42] H. O. Jeschke, M. E. Garcia, K. H. Bennemann. ,“ Theory for the ultrafast ablation of
graphite films ,” J. Phys. Rev. Lett. ,2001,87 (1): 015003.
[ 43] Roberts, D. Cormode, C. Reynolds et al. ,“Response of graphene to femtosecond
high-intensity laser irradiation,” J. Appl. Phys. Lett. , 2011,99 (5): 051 912.
[ 44] D. V. Fedoseev, V. L. Bukhovets, I. G. Varshavskayaet al. ,“Transition of graphite into diamond in a solid phase under the atmospheric pressure,”. Carbon, 1983,21 (3): 237 ~ 241.
[ 45] S. Lee, M. F. Toney, W. Koet al. ,“Laser-synthesized epitaxial graphene,”. ACS Nano, 2010,4 (12): 7524 ~ 7530.
[ 46] J. Jiang,T. Huang, M, Zhong , X. Yeiaohui ,Z. Lin,J. Long, Lin. L ,“Research Status and Development Trends of Interaction between Laser and Graphene,”.CJL, 2013, 40. 0201002.
[ 47] J. B. Park, W. Xiong, Y. Gao et al. ,“Fast growth of graphene patterns by laser direct writing,”. Apl. , 2011,98 (12): 123109.
[ 48] L. J. Cote, R. Cruz-Silva, J. X. Huang. ,“Flash reduction and patterning of graphite oxide and its polymer composite,”. J. Am. Chem. Soc. 2009,131 (31): 11027 – 11032.
[ 49] V. Abdelsayed, S. Moussa, H. M. Hassanet al. ,“ Phototherma deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature,”. J. Phys. Chem. Lett. , 2010,1 (19): 2804 – 2809.
[ 50] Y. Zhang, L. Guo, S. Wei et al. ,“Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction ,”. Nano Today, 2010,5 (1): 15 ~ 20.
[ 51 ]M. Qian, Y. S. Zhou, Y. Gao et al. ,“ Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite,”. Appl. Phys. Lett. , 2011,98 (17): 173108.
[ 52] D. A. Sokolov, K. R. Shepperd, T. M. Orlando. ,“ Formation of graphene features from direct laser-induced reduction of graphite oxide,”. J. Phys. Chem. Lett. , 2010,1 (18): 2633 – 2636.
[ 53] A. T. T. Koh, Y. M. Foong, D. H. C. Chua. ,“Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature. ,”. Appl. Phys. Lett. , 2010,97 (11): 114,102.
[ 54] M. Currie, J. D. Caldwell, F. J. Bezares et al. ,“Quantifying pulsed laser induced damage to graphene,”. Appl. Phys. Lett. , 2011,99 (21): 211,909.
[ 55] A. Roberts, D. Cormode, C. Reynolds et al. ,“Response of graphene to femtosecond high-intensity laser irradiation ,”. Appl. Phys. Lett. , 2011,99 (5): 051 912.
[ 56] W. Zhang, L. Li, Z. Wang et al. ,“Ti sapphire femtosecond laser direct micro-cutting and profiling of graphene,”. J. Appl. Phys. A: Materials Science & Processing, 2012,109 (2): 291 ~ 297.
[ 57] G. Kalita, L. T. Qi, Y. Namba et al. ,“ Femtosecond laser induced micropatterning of graphene film ,”. J. Mater. Lett. , 2011,65 (11): 1569 – 1572.
[ 58] Huang, Y. Liu, L. C. Ji et al. ,“ Pulsed laser assisted reduction of graphene oxide,”. J. Carbon, 2011,49 (7): 2431 ~ 2436.
[ 59] P. Kumar, L. S. Panchakarla, C. N. Rao. ,“Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons ,”. J. Nanoscale, 2011,3 (5): 2127 ~ 2129.
[ 60] K. Wongravee, T. Parnklang, P. Pienpinijtham,C. Lertvachirapaiboon, Y. Ozaki, C. Thammacharoena and S. Ekgasita ,“Chemometric analysis of spectroscopic data on shape evolution of silver nanoparticles induced by hydrogen peroxide,”. Phys.Chem. Chem. Phys., 2013,15, 4183.
[ 61] 林建中、周宗華, “高分子材料,”新文京開發出版有限公司(2002).
[ 62] Kai-Ling Liang, Ya-Chi Wang, Wei-Li Lin and Jiang-Jen Lin, “Polymer-assisted self-assembly of silver nanoparticles into interconnected morphology and enhanced surface electric conductivity,” RSC Adv., 2014, 4, 15098–15103.
[ 63] 劉維澤, “聚乙烯醇/硝酸銀導電性薄膜之製備及其應用在電磁波遮蔽材料之研究明,”明新科技大學(2007).
[ 64] Boting Chen, Biao Dong, “Morphology control and optical properties of silver nanoparticles based on PVA template,” Jilin University (2010).
[ 65] K.A. Jubya, C. Dwivedia, M. Kumara, S. Kotab, H.S. Misrab, P.N. Bajaja, “Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study,” Carbohydrate Polymers 89 (2012) 906–913.
[ 66] S. D. Borse, S. S. Joshi, “Optical and Structural Properties of PVA Capped Gold Nanoparticles and Their Antibacterial Efficacy,” Advanced Chemistry Letters1, (2013)15–23.
[ 67] L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wangc, Y. Liu, “High strength graphene oxide/polyvinyl alcohol composite hydrogels,” J. Mater. Chem, 2011, 21, 10399.
[ 68] 李惠菁, “多壁奈米碳管/聚乙烯醇高分子複合材料合成與物性分析研究,”國立清華大學材料科學工程學系碩士論文(2008).
[ 69] 王怡軫, “石墨烯/聚乙烯醇奈米複材之製程與機械性質分析,”逢甲大學材料與製造工程學系碩士論文(2008).
[ 70] “SED和FED顯示技術的比較分析,” EET電子工程專輯 20070828.
[ 71] “Toshiba IFA-Preview: Die neue SED-Technologie,”areadvd 200507.
[ 72] “Electronic Supplementary Material (ESI) for Journal of Materials Chemistry,” The Royal Society of Chemistry 2011
[ 73] “Carbon • Non-Metals,” 2013 Thermo Fisher Scientific Inc
[ 74] “Handbook of The Elements and Native Oxides,” 1999 XPS International, Inc.
[ 75] J.Tamayo、R.Garcia, “Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy,” APL. 71 (16), 19971020.
[ 76] M. Y. Lin, C. S. Chang, W.L. Li, “An Introduction to the Principle of Atomic Force Microscope,” 科儀新知第二十七卷第二期94.10
[ 77] 林威庭, “氧化石墨烯與氧化石墨烯金屬奈米粒子複合物之雷射製程應用與探討,” 國立中正大學工學院機械工程學系碩士論文(2012).
[ 78] K A Nikiforov and A N Zartdinov , “Studying field emission characteristics of point and wedgeshaped surface defects,” JPCS. 541 (2014) 012009
[ 79] J. Liu,Y. Xue, Y. Gao , D. Yu , M. Durstock , and L. Dai, “Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells,” Adv. Mater. 2012, 24, 2228–2233
[ 80] E. Stratakis, K. Savva, D. Konios, C. Petridisa and E. Kymakis, “Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide holetransporting layers,” Nanoscale, 2014, 6, 6925
[ 81] R. Garg, N. K. Dutta and N. R. Choudhury, “Work Function Engineering of Graphene,” Nanomaterials 2014, 4, 267-300
[ 82] Tan, C.; Huang, X.; Zhang, , “Synthesis and applications of graphene-based noble metal,” nanostructures. Mater. Today 2013, 16, 29–36.
[ 83] Z. Xiao, J. She, S. Deng, Z. Tang, Z. Li, J. Lu, and N. Xu, “ Field Electron Emission Characteristics and Physical Mechanism of Individual Single-Layer Graphene,” ACS Nano, 2010, 4 (11), pp 6332–6336
[ 84] S. A. Getty, T. T. King, R. A. Bis, H. H. Jones, F. Herrero, B. A. Lynch, P. Roman, P. Mahaffy , “Performance of a carbon nanotube field emission electron gun,” Proc. of SPIE Vol. 6556 655618-2
[ 85] H. F. Gray, R. F. Greene , “Ultra-fast field emitter array vacuum integrated circuit switching device,” US Patent 4,578,614, 1986
[ 86] K. L. Jensen1, “Field emitter arrays for plasma and microwave source applications,” Phys. Plasmas 6, 2241 (1999)
[ 87] P. Liu, Y. Wei, K. Liu, L. Liu, K. Jiang, and S. Fan, “New-Type Planar Field Emission Display with Super aligned Carbon Nanotube Yarn Emitter,” Nano Lett., 2012, 12 (5), pp 2391–2396
[ 88] N. Shimoi, , A. L. Estrada, Y. Tanaka, K. Tohji, “Properties of a field emission lighting plane employing highly crystalline single-walled carbon nanotubes fabricated by simple processes,” Carbon, Volume 82, February 2015, Page 614
[ 89] T. Matsumoto, S. Iwayama, T. Saito,Y. Kawakami, F.Kubo, and H. Amano, “Handheld deep ultraviolet emission device based on aluminum nitride quantum wells and graphene nanoneedle field emitters,” 22 October 2012 / Vol. 20, No. 22 / OPTICS EXPRESS
[ 90] M.-S. Shin ; J.-W. Jeong ; J.-W. Kim ; S. Park ; J.-T. Kang ; J.-H. Yeon ; Y. C. Choi ; Y.-H. Song, “Aging process of carbon nanotube-based field emission X-ray tubes for their stable and reliable operation,” Technical Digest, 2015 28th International Vacuum Nanoelectronics Conference, 13-17 July, Guangzhou, China
[ 91] Iijima, Sumio, “Helical microtubules of graphitic carbon,” nature 354.6348 (1991): 56-58.
[ 92] 羅吉宗,林長華, “新世代照明光源與顯示器─場發射技術,”全華圖書股份有限公司,2014
[ 93] “Silver Oxide MSDS,” http://www.saltlakemetals.com. Salt Lake Metals. Retrieved 2014-06-08.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2015-10-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明