博碩士論文 101328008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.80.223.123
姓名 張文浩(Wen-Hao Chang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 三種不同追日偏差量測設備比較與直射日照量測方法
(Comparison of Three Different Measuring of Offset Devices for Sun-Tracking and Measurement of Direct Normal Irradiation with PSD)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 不同型式光纖與集光器搭配之效率測試★ 微電滲泵之暫態熱流研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文透過長期(四個月)的戶外測試比較三種不同的追日偏差量測設備,包含PSD (position sensitive device)、CCD (charged diode device)和webcam,以直射日照和總日照的比例(Ir)和晴朗指數(Kt)來定義晴天和多雲,晴天和多雲的區別Ir和Kt分別為0.7和0.6以及0.3和0.4。結果顯示在晴天時(對應水平總日照GHI>700 W/m2),三台儀器量測的偏差角度約在0.2o~0.3o左右,三者解析追日偏差的能力相仿。而在多雲時(對應GHI<500 W/m2)),三台儀器會有差異,以8/12這天為例,PSD、CCD和webcam當日平均偏差角分別為0.23、0.46和0.49,此時的PSD平均偏差角明顯小於CCD和webcam,主要原因是在低日照時,光感測器會停止正常運作,使得追蹤器無法正常的追蹤太陽,隨著停止追日時間的長短,直接影響了追蹤器和太陽的偏差角度,當追蹤器和太陽的偏差角度較大時,PSD儀器無法接受到大量的直射日照來判斷太陽的位置,須等到追蹤器正常追日時,才能有效的判斷偏差角度,因此無法就此認定PSD比CCD和webcam可靠。
整體來說PSD採樣速度快(2~9 μs),無需透過影像處理來判斷太陽質心位置,但是在低日照和多雲時無法有效判斷太陽質心位置,CCD和webcam則可以透過光學鏡頭和影像處理來提高尋找太陽質心位置的準確度,因為CCD可以更換不同的光學鏡頭因此拍攝的太陽影像清晰優於webcam,webcam的優點在於其成本低廉(約7000元),在日照條件好的時候也能穩定的判斷偏差角度。
此外透過PSD電壓值與DR01直射日照計做關聯分析,使得PSD在量測偏差角度同時也具備量測直射日照量之功能,PSD電壓轉換直射日照與DR01直射日照計在經過戶外實測時,證實其平均誤差皆小於4%,有一定的可靠性。
摘要(英) In this study, through a long-term outdoor test comparison of three different measuring of offset devices for sun-tracking, including PSD (position sensitive device), CCD (charge-coupled diode) and webcam, the results show a clear day, the amount of the deviation angle of three instruments are measured at approximately 0.2o-0.3o around, but in cloudy, the three instruments will be a slight difference, this time the PSD will be significantly less than the average deviation angle CCD and webcam, but this does not mean that the PSD measurement instrument to the average deviation angle is small so than CCD and webcam reliable cause of this difference is due to the low sunshine PSD unable to effectively discriminating position of the sun.
Overall PSD sampling speed, image processing is not required to determine the sun through the centroid position, but in the low sunshine and cloudy when not effectively determine the centroid position of the sun, CCD and webcam is possible through the optical lens and image processing to improve Looking for the accuracy of the centroid position of the sun, while the CCD can be changed due to different optical lenses and therefore taken out of the sun than the superior image quality clear advantage webcam, webcam in good times its low cost , in sunlight conditions can also stabilize the judgment deviation angle.
In addition, through PSD voltage meter to do with DR01 pyrheliometer correlation analysis, making the PSD in measuring the deviation angle measurement but also have the function of the amount of direct normal irradiation, PSD voltage conversion direct normal irradiation and DR01 pyrheliometer when measured after outdoor confirmed the average percentage error are less than 4%, there is a certain reliability.
關鍵字(中) ★ 追日偏差角量測設備
★ 直射日照計
關鍵字(英) ★ PSD
★ CCD
★ webcam
論文目次 第一章緒論 1
1.1 前言 1
1.2 太陽光電技術 2
1.3 太陽光電系統 3
1.4 文獻回顧 5
1.5 研究動機 20
1.6論文架構 21
第二章1.5kW實驗型CPV光電系統 22
2.1 系統架構 22
2.2 太陽能模組 22
2.3 追蹤控制單元 24
2.4.1 開迴路控制單元 24
2.4.2 閉迴路控制單元 24
2.4.3 混合式控制單元 25
2.4 微型氣象站 26
2.5 DAQ資料擷取系統 29

第三章 追日精度量測設備與影像處理 35
3.1 追日量測設備 35
3.1.1 位置感測器(PSD) 35
3.1.2 電荷耦合元件(CCD) 36
3.1.3 互補式金屬氧化物半導體(CMOS) 38
3.2 追日偏差角度轉換 39
3.3 影像處理過程概述 40
第四章 實驗結果與分析 43
4.1 PSD、CCD、webcam長期戶外實測分析 43
4.2 三台量測設備直射日照限制 51
4.3 PSD量測之電壓值與直射日照結果比較 56
4.4 PSD電壓值轉換直射日照與DR01直射日照計實測比較 60
第五章結論與未來改進方向 65
5.1 結論 65
5.2 未來改進方向 66
參考文獻 67
參考文獻 朱麗,黃群武,譯著 (2012),聚光光伏‒原理、系統與應用,天津大學出版社。
行政院原子能委員會 (2011),太陽光發電影像追蹤技術研發,委託研究報告。
林伯峻 (2013),追日偏差量測技術比較與聚光太陽光電系統之實測,國立中央大學能源工程研究所碩士論文。
林武君 (2012),影像視覺追日偏差量測技術開發與追日太陽光電系統之實測,國立中央大學能源工程研究所碩士論文。
陳麒夆 (2010),追日偏差量測技術開發與聚光太陽光電系統之實測,國立中央大學能源工程研究所碩士論文。
陽光屋頂百萬座計畫 https://mrpv.org.tw/about.php?id=1
維基百科:水力壓裂(2013) http://zh.wikipedia.org/wiki/水力壓裂
劉智維 (2010),以指向誤差修正技術應用在追日精度改進,國立中央大學能源工程研究所碩士論文。
Abdallah, S., Nijmeh, S. (2004) “Two axes sun tracking system with PLC control,” Energy Conversion and Management 45:1931–1939.
Arturo, M.M., Alejandro, G.P (2010) “High–precision solar tracking system,” Proceedings of the World Congress on Engineering Vol. II.
Azizi, K. and Ghaffari, A. (2013) “Design and manufacturing of a high-precision sun tracking system based on image processing,” International J. Photoenergy, Vol. 2013, Article ID 754549, doi:10.1155/2013/754549.
BASLER (2011) “Scout users’ manual,” BASLER www.baslerweb.com/‎.
Canny, J. (1986) “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679-698.
Chang, Y.K., Lee, B.H. (2008) “Development of high-accuracy image centroiding algorithm for CMOS-based digital sun sensors.” Sensors and Actuators A: Physical, 144(1), 28, 29–37.
Davis, M., Lawler, J., Coyle J., Reich, A., Williams, T. (2008) “Machine vision as a method for characterizing solar tracker performance,” GreenMountain Engineering, LLC, 33rd IEEE Photovoltaic Specialists Conference.
Davis, M., Stafford, B., Martínez M., Sánchez D. (2009) “Tracker accuracy: Field experience and correlation with meteorological conditions,” 24th EUPVSEC, Hamburg, Germany.
Donato, V., Stefano, B., Massimiliano O., Marco S., Antonio P., Giuliano M. (2010) “Measurement of sun-tracking accuracy and solar irradiance through multispectral imaging,” Optics for Solar Energy (OSE), Tucson, AZ, Solar Concentrator Characterization (STuA).
Fontani, D., Sansoni,P., Francini,F., Jafrancesco,D., Mercatelli, L., and Sani, E. (2011) “Pointing Sensors and Sun Tracking Techniques.” International J. Photoenergy, Vol. 2011, Article ID 806518, doi:10.1155/2011/806518..
Ghosal, K., Lilly, D., Gabriel J., Burroughs, S. (2014) “Semprius field results.” CPV-10, New Mexico, USA, AIP Conf. Proc. 272-275.
Luque, A.L., Sala, G., Luque-Heredia, I. (2006) “Photovoltaic concentration at the onset of its commercial deployment,” Prog. Photovolt: Res. Appl. 14:413-428.
Luque-Heredia, I., Moreno, J.M., Magalhaes, P.H., Cervantes, R., Quemere, G., Laurent, O. (2007) “Inspira’s CPV sun tracking,” Concentrator Photovoltaics, Chapter 11, Springer-Verlag.
Neville R.C. (1978) “Solar energy collector orientation and tracking mode,” Solar Energy 20:7–11.
Nijegorodov, N., Devan, K.R.S., Jain P.K., Carlsson, S. (1994) “Atmospheric transmittance models and an analytical method to predict the optimum slope of an absorber plate, variously orientated at any latitude,” Renew Energy 4:529–543.
National Instruments (2007) “NI vision concepts manual,” National Instruments.
Norton, M.S. H., Anstey, B., Bentley, R.W. and Georghiou , G.E. (2010) “Tracking accuracy assessment for concentrator photovoltaic systems,” CPV-6, Freiburg, Germany, AIP Conf. Proc. 1277(1), pp. 153-156.
NREL (2013) “Best research cell efficiencies,” http://www.nrel.gov/ncpv/, accessed on June 10, 2013.
Reda, I., Andreas, A. (2008) “Solar position algorithm for solar radiation applications,” NREL/TP-560-34302.
Scripps CO2 Program http://scrippsco2.ucsd.edu/, accessed on June 10, 2013.
Sefa, I., Demirtas, M., Colak, I. (2009) “Application of one-axis sun tracking system,” Energy Conversion and Management 50:2709-2718.
Sobel, I.E. (1970) “Camera models and machine perception,” PhD dissertations, Stanford University, Palo Alto, Calif.
Semprius http://semprius.com/products/performance/
Wojtczuk S., Chiu P., Zhang X., Pulver D., Harris C., Siskavich B. (2011) “42% 500X bi-facial growth concentrator Cells,” CPV-7, Las Vegas, USA, AIP Conf. Proc.
Yeh, H.Y., Lee, C. D., Huang, H. C. (2013) “The development of image-based solar tracking system,” CPV-9, Miyazaki, Japan, AIP Conf. Proc.
Taki, M., Ajabshirchi, Y., Behfar,H., Taki, M. (2011) “Experimental investigation and construction of PV solar tracker control system using image processing,” Modern Applied Science 5(6) 237-244.
Xu, G., Zhong,Z., Wang,B., Guo, R. and Tian, Y. (2013) “Design of PSD based solar direction sensor”, Guiyang, China, Proc. SPIE 8916, Sixth International Symposium on Precision Mechanical Measurements.
指導教授 吳俊諆(Jun-Chi Wu) 審核日期 2015-4-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明