博碩士論文 101328011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.204.173.45
姓名 薛穎睿(Ying-jui Hsieh)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 金屬發泡材應用於質子交換膜燃料電池內流道之研究
(Metal foam as flow field for proton exchange membrane fuel cell)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 直接甲醇燃料電池氣體擴散層之研究★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討
★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究
★ 多孔材應用於質子交換膜燃料電池散熱之研究★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用商用高溫型質子交換膜電極組Advent TPS®,搭配傳統蛇行流道石墨板與新型多孔金屬流道板,組成燃料電池,以探討操作溫度、氣體計量比、氣體預熱溫度及氣體加濕溫度對電池性能的影響,且利用交流阻抗分析,觀察電池內部現象的變化,並驗證其相對應之電化學機制。
研究結果顯示,多孔金屬流道具有氣體滲透性高的特性,可以提升氣體的對流及擴散性,增加與白金觸媒反應的機會,且面密度高的金屬發泡材可以有效降低電池內部元件界面接觸阻抗,使電池性能在使用純氧氣於操作電壓0.6 V時,明顯較傳統蛇行流道高出40 %以上。而適度的增加操作溫度、氣體計量比及氣體加濕溫度,有助於提升燃料電池的性能表現。交流阻抗分析所使用的等效電路模型,可以確實的描述燃料電池之電化學機制,輔助我們對於性能的分析及判讀。
在長時間測試部分可以發現,在操作200小時之後開始出現性能下降的趨勢,主要是與觸媒的利用率有關。
摘要(英) This study used a commercial high temperature proton exchange membrane (PEM) electrode assembly Advent TPS®, with a conventional graphite serpentine flow channel and recently developed metal foam flow channel, to assemble a PEM fuel cell. Effects of operating temperature, stoichiometry, gas preheating temperature, humidification on cell performance are investigated. AC impedance analysis is also used to study the changes in various resistances inside the cell, and verify corresponding electrochemical mechanism.
Results show that metal foam flow channel having high gas permeability improves gas convection and diffusion, and increase the chance of reaction with the platinum catalyst. The porous structure of metal foam can effectively reduce the contact resistance between the flow plate and carbon paper. The current density at 0.6 V is approximately 40 % higher than conventional graphite serpentine flow channel, when using oxygen as the oxidant. Increasing the operating temperature, stoichiometry, or humidification, improved the cell performance. The equivalent circuit model of AC impedance used in the analysis can describe the electrochemical mechanism of fuel cell.
In long time operation test, we observe the performance began to decline after 200 hours, and is mainly related to the decay of catalyst.
關鍵字(中) ★ 質子交換膜燃料電池
★ 多孔金屬流道
★ 交流阻抗分析
關鍵字(英) ★ Proton exchange membrane fuel cell
★ Metal foam flow channel
★ AC impedance analysis
論文目次 中文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XVI
符號說明 XXII
第 一 章 緒論 1
1.1. 前言 1
1.2. 質子交換膜燃料電池之工作原理 3
1.3. 質子交換膜燃料電池之極化現象 6
1.4. 質子交換膜燃料電池之結構 8
1.5. 研究動機與目標 15
第 二 章 文獻回顧 17
2.1. 集電/流道板及鍍層 17
2.2. 多孔結構材料應用 20
2.3. 交流阻抗分析 21
2.4. 高溫型質子交換膜燃料電池 23
第 三 章 實驗方法與實驗設備 29
3.1. 燃料電池測試機台 29
3.2. 孔隙分析儀 32
3.3. 交流阻抗分析儀 33
3.4. 燃料電池規格 39
3.5. 燃料電池操作流程 45
第 四 章 結果與討論 47
4.1. 電極/流道板設計對燃料電池性能的影響 47
4.2. 操作溫度對燃料電池性能的影響 60
4.3. 陰極氧化劑計量比對燃料電池性能的影響 72
4.4. 陽極燃料計量比對燃料電池性能的影響 83
4.5. 反應氣體預熱溫度對燃料電池性能的影響 95
4.6. 反應氣體加濕對燃料電池性能的影響 107
4.7. 燃料電池長時間性能測試 122
第 五 章 結論與建議 141
5.1. 結論 141
5.2. 未來方向 143
參考文獻 145
參考文獻 [1] C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang, S. K. Lo. “A PEM fuel cell with metal foam as flow distributor,” Energy Convers Manage, Vol. 62, pp. 14-21, 2012
[2] R. O’Hayre, S. W. Cha, W. Colella, F. B.Prinz,王曉紅、黃宏 譯,「燃料電池基礎」,全華科技圖書股份有限公司,2008
[3] http://www.toshiba.co.jp/csr/en/highlight/2005/fuelcell.htm
[4] K. Kordesch, G. Simader, “Fuel Cells and Their Applications,” VCH Weinheim, 1996
[5] 黃鎮江,「燃料電池」,全華科技圖書股份有限公司,2005
[6] T. M. Thampan, N. H. Jalani, P. Choi, R. Datta. “Systematic Approach to Design Higher Temperature Composite PEMs,” Journal of The Electrochemical Society, Vol. 152, pp. A316-A325, 2005
[7] M. K. Daletou, J. K. Kallitsis, G. Voyiatzis, S. G. Neophytides. “The interaction of water vapors with H3PO4 imbibed electrolyte based on PBI polysulfone copolymer blends,” Journal of Membrane Science, Vol. 326, pp.76-83, 2009
[8] S. Zhang, X. Z. Yuan, J. N. C. Hin, H. Wang, K. A. Friedrich, M. Schulze. “A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 194, pp. 588-600, 2009
[9] H. Tawfik, Y. Hung, D. Mahajan. “Metal bipolar plates for PEM fuel cell—A review. Journal of Power Sources,” Vol. 163, pp. 755-767, 2007
[10] X. Li, I. Sabir. “Review of bipolar plates in PEM fuel cells Flow-field designs,” International Journal of Hydrogen Energy, Vol. 30, pp. 395-371, 2005
[11] D. P. Davies, P. L. Adcock, M. Turpin, S. J. Rowen. “Stainless steel as a bipolar plate material for solid polymer fuel cells,” Journal of Power Sources, Vol. 86, pp. 237–242, 2000
[12] M. J. Kelly, G. Fafilek, J. O. Besenhard, H. Kronberger, G. E. Nauer. “Contaminant absorption and conductivity in polymer electrolyte membranes,” Journal of Power Sources, Vol. 145, pp. 249–252, 2005
[13] Y. Hung, K. M. El-Khatib, H. Tawfik. “Testing and evaluation of aluminum coated bipolar plates of pem fuel cells operating at 70 °C,” Journal of Power Sources, Vol. 163, pp. 509-513, 2006
[14] Y. Wang, D. O. Northwood. “An investigation into TiN-coated 316L stainless steelas a bipolar plate material for PEM fuel cells,” Journal of Power Sources, Vol. 165, pp. 293–298, 2007
[15] 陳龍正,洪敏發,李明三,「流道設計對質子交換膜燃料電池性能的影響」,技術學刊,Vol. 22,pp. 71-76,2007
[16] W. L. Wang, S. M. He, C. H. Lan. “Protective graphite coating on metallic bipolar plates for PEMFC applications,” Electrochimica Acta, Vol. 62, pp. 30-35, 2012
[17] A. Kumara, R. G. Reddy. “Materials and design development for bipolar/end plates in fuel cells,” Journal of Power Sources, Vol. 129, pp. 62-67, 2004
[18] J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan, J. Itescu. “Water flow in the gas diffusion layer of PEM fuel cells,” Journal of Membrane Science, Vol. 261, pp. 98-106, 2005
[19] S. Arisetty, A. K. Prasad, S. G. Advani. “Metal foams as flow field and gas diffusion layer in direct methanol fuel cells,” Journal of Power Sources, Vol. 165, pp. 49–57, 2007
[20] B. T. Tsai, C. J. Tseng, Z. S. Liu, C. H. Wang, C. I. Lee, C. C. Yang, S. K. Lo. “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor,” International Journal of Hydrogen Energy, Vol. 37, pp. 13060-13066, 2012
[21] M. J. Song, S. Y. Cha, W. M. Lee. “Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method,” Journal of Power Sources, Vol. 94, pp. 78-84, 2001
[22] X. Yuan, J. C. Sun, M. Blanco, H. Wang, j. Zhang, D. P. Wilkinson. “AC impedance diagnosis of a 500 W PEM fuel cell stack : Part I: Stack impedance,” Journal of Power Sources, Vol. 161, pp. 920–928, 2006
[23] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi. “AC impedance characteristics of a 2 kW PEM fuel cell stack under different operating conditions and load changes,” International Journal of Hydrogen Energy, Vol. 32, pp. 4358-4364, 2007
[24] B. Xing, O. Savadogo. “The effect of acid doping on the conductivity of polybenzimidazole (PBI),” Journal of New Materials for Electrochemical Systems, Vol. 2, pp. 95-101, 1999
[25] Q. Li, R. He, R. W. Berg, H. A. Hjuler, N. J. Bjerrum. “Water uptake and acid doping of polybenzimidazoles as electrolytemembranes for fuel cells,” Solid State Ionics, Vol. 168, pp. 177–185, 2004
[26] J. Hu, H. Zhang, Y. Zhai, G. Liu, B. Yi. “500 h Continuous aging life test on PBI H3PO4 high-temperature PEMFC,” International Journal of Hydrogen Energy, Vol. 31, pp. 1855-1862, 2006
[27] S. J. Andreasen, S. K. Kær. “400 W high temperature PEM fuel cell stack test,” ECS Transactions, Vol. 5(1), pp. 197-207, 2007
[28] S. J. Andreasen, S. K. Kær. “Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks,” International Journal of Hydrogen Energy, Vol. 33, pp. 4655-4664, 2008
[29] S. Yu, L. Xiao, B. C. Benicewicz. “Durability Studies of PBI-based High Temperature PEMFCs,” FUEL CELLS 08, Vol. 3-4, pp. 165-174, 2008
[30] P. L. Rasmussen, M. P. Nielsen, S. K. Kær, S. J. Andreasen. “Experimental study and modeling of degradation phenomena in HTPEMfuel cell stacks for use in CHP systems,” Hydrogen and Fuel Cells Conference, 2009
[31] S. J. Andreasen, J. R. Vang, S. K. Kær. “High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy,” International journal of hydrogen energy, Vol. 36, pp. 9815-9830, 2011
[32] L. Lűke, H. Janßen, M. Kvesic, W. Lehnert, D. Stolten. “Performance analysis of HT-PEFC stacks,” International journal of hydrogen energy, Vol. 37, pp. 9171-9181, 2012
[33] S. Galbiati, A. Baricci, A. Casalegno, R. Marchesi. “Experimental study of water transport in a polybenzimidazole-based high temperature PEMFC,” International journal of hydrogen energy, Vol. 37, pp. 2462-2469, 2012
[34] 吳佩蓉,「腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究」,國立中央大學能源工程研究所碩士論文,2013
[35] 蔡秉蒼,「應用金屬發泡材為流道之質子交換膜燃料電池之研究」,國立中央大學能源工程研究所博士論文,2012
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明