博碩士論文 101328012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.216.32.116
姓名 楊尚(Shang Yang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 白金奈米粒子粒徑與分佈密度對多孔矽蝕刻影響之研究
相關論文
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 常壓下熱電材料特性量測方法之模擬與分析
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 微致冷器之致冷特性數值模擬分析
★ 石英柱狀微結構濕蝕刻製程之研究★ 利用暫態熱微影技術製備高分子微結構
★ 多孔矽製備與熱傳特性量測之研究★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用聲子波茲曼方程式模擬非均質奈米多孔材料之熱傳性質★ 利用電子束微影製作高密度石英柱狀結構
★ 薄膜陣列結構微致冷器致冷特性數值模擬★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多孔矽奈米結構具有高表面積及物體吸附特性與半導體製程有良好的相容性,在先進科技發展中具有重要地應用,例如鋰電池電極、生物與化學感測器及太陽能電池之抗反射層。另外,其相對於矽塊材擁有較低的熱傳特性能,可應用於絕熱及熱電材料。常見的矽奈米結構製備方法包括如乾蝕刻、電化學蝕刻以及金屬輔助化學蝕刻。其中金屬輔助化學蝕刻具有製程簡易與設備成本低等優點,常見以貴金屬薄膜作為觸媒,再置入含有氫氟酸及氧化劑的混合液中進行蝕刻,然而對於觸媒型貌及分佈影響的研究相當少。本文選用白金作為金屬觸媒,具有優秀的催化能力及抗氧化能力。先以濺鍍方式於矽基材上沉積數奈米白金薄膜,再以熱退火方式改變金屬觸媒之形貌,進行金屬輔助化學蝕刻。研究探討製程參數對白金奈米粒子成長之影響,包括製程環境、時間、退火溫度及白金薄膜厚度。蝕刻後再探討白金粒子粒徑及分佈密度,與蝕刻後結構間關聯性。
在粒子成長方面,由實驗結果得知,相對高溫下可忽略製程環境及時間影響,退火溫度提升利於奈米粒子成長,奈米粒子對白金厚度變化最為敏感。在蝕刻方面,由結構截面發現奈米粒子粒徑並不影響結構蝕刻率。由結構表面發現影響表面形貌的關鍵為奈米粒子之分佈密度,分佈密度極高的情況下,蝕刻結構偏向多孔結構,且結構頂端有被蝕刻現象。而分佈密度較低時,結構則呈現柱狀結構,頂部則沒有被蝕刻。
摘要(英) Porous silicon has high surface area and adsorption property with good compatibility with semiconductor fabrication, which can be applied to many advanced technology, such as lithium-ion batteries, biological and chemical sensors, and surface texturization in photovoltaic cells. It also has low thermal conductivity compared to bulk silicon, which is favorable as thermal insulation or thermoelectric materials. Numerous methods have been developed to fabricate porous silicon, such as dry etching, electrochemical etching, and metal-assisted chemical etching, The metal-assisted chemical etching is relatively simple and cost-effective, in which a thin layer of noble metal, served as a catalyst, is deposited on the smaple surface and then immersed in a mixed solution containing hydrofluoric acid and oxidant. Numerous studies have shown the fabrication of various nanostructures with different catalyst metal. However, the study on the effects of catalyst layer morphology is very rare.
In this work we use platinum as catalyst, due to its faster etching rate and better stability in disolution. The Pt film is thermal annealed to form nanoparticles flowed by the metal-assisted chemical etching to investigate its effects to the etching results. First we compared the size and distribution of nanoparticles in different annealing conditions with various atmospheres, annealing time, temperature, and platinum thickness. Then we observe the etching profiles using scanning electron microscopy. In the results, we found there are negligible effects in annealing time and atmospheric gases in high annealing temperature. And the higher the Pt thickness result the higher the nanoparticles size. In etching results, the etching rates are the same for various sizes of nanoparticles. The number density of nanoparticles is a key for structure morphology. Higher number density tends to form porous structures with some etching at the top of the structures, while lower number density tends to form columnar structures without etching at the top of the structures.
關鍵字(中) ★ 白金奈米粒子
★ 熱退火
★ 金屬輔助化學蝕刻
關鍵字(英) ★ platinum nanoparticles
★ thermal annealing
★ metal assisted chemical etching
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機及目的 7
1.4 論文架構 8
第二章 理論基礎 9
2.1 金屬輔助化學蝕刻之機制 9
2.1.1 金屬觸媒對蝕刻影響 10
2.1.2 蝕刻液影響 12
2.2 電化學蝕刻機制 13
2.3 薄膜退火機制 14
2.4 能帶理論 16
第三章 研究方法 18
3.1 研究架構 18
3.2 實驗流程 18
3.3 實驗參數設計 20
3.4 統計及分析 22
第四章 結果與討論 25
4.1 奈米粒子生長 25
4.1.1 製程環境及製程時間影響 25
4.1.2 白金厚度影響 29
4.1.3 退火溫度影響 40
4.2 蝕刻結果 44
4.2.1 退火溫度對結構影響 44
4.2.2 白金厚度對蝕刻結構影響 55
4.2.3 分佈密度對結構影響 77
4.2.4 孔壁蝕刻現象 81
4.3 基準蝕刻現象 83
第五章 結論與未來展望 93
5.1 結論 93
5.2 未來展望 94
參考文獻 95
參考文獻 [1] S. W. Chung, J. Y. Yu and J. R. Heath, ”Silicon nanowire devices,” Applied Physics Letters, vol. 76, pp. 2068-2070, 2000.
[2] Kui-Qing Peng, Xin Wang, Li Li, Ya Hu and Shuit-Tong Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today, vol. 8, pp. 75-97, 2013.
[3] S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg and B. L. Miller, “Porous SiliconMicrocavities for Biosensing Applications,” phys. stat., sol. (a) vol. 182, pp. 541-546, 2000.
[4] K. Q. Peng, X. Wang and S. T. Lee, “Gas sensing properties of single crystalline porous silicon nanowires,” Applied Physics Letters vol. 95, 2009.
[5] Akram I. Boukai, Yuri Bunimovich, Jamil Tahir-Kheli, Jen-Kan Yu, William A. Goddard III and James R. Heath, “Enhanced thermoelectric performance of rough silicon nanowires, ” Nature, vol. 451, 2008.
[6] Bo-soon Kim, Won-Ki Ju, Min-Woo Lee, Seung-Gol Lee and Beom-Hoan O, “Optimized process of metal assisted silicon wet etching for antireflection layer,” Microelectronic Engineering vol. 98, pp. 395-399, 2012.
[7] A. Uhlir, “Electrolytic shaping of germanium and silicon,” Bell systemTechnology Journal, Vol. 35, pp. 333, 1956
[8] V. Lehmann, “Porous silicon - A new material for MEMS,” IEEE MEMS Workshop, pp. 1-5, 1996.
[9] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Applied Physics Letters vol. 4, pp. 89, 1964.
[10] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Applied Physics Letters, vol. 77, pp. 2572-2574, 2000.
[11] Hui Fang, YinWu, Jiahao Zhao and Jing Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology vol. 17, pp. 3768-3774, 2006.
[12] Kuiqing Peng, Yin Wu, Hui Fang, Xiaoyan Zhong, Ying Xu, and Jing Zhu, “Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays,” Angew. Chem. vol. 44, pp. 2737-2742, 2005.
[13] Huang Z, Shimizu T, Senz S, Zhang Z, Zhang X, Lee W, Geyer N and Gösele U, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett., pp. 2519-2525, 2009.
[14] Chia-Lung Lee, Kazuya Tsujino, Yuji Kanda, Shigeru Ikeda and Michio Matsumura, “Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts,” J. Mater. Chem. vol. 18, pp. 1015-1020, 2008.
[15] Xiaopeng Li, Yanjun Xiao, Chenglin Yan1, Jae-Won Song, Vadim Talalaev, Stefan L. Schweizer, Katarzyna Piekielska, Alexander Sprafke, Jung-Ho Lee and Ralf B. Wehrspohn, “Influence of the Mobility of Pt Nanoparticles on the Anisotropic Etching Properties of Silicon,” ECS Solid State Lett. vol. 2, Issue 2, pp. 22-24, 2013.
[16] Aizawa M, Cooper AM, Malac M and Buriak JM, “Silver nano-inukshuks on germanium.” Nano Lett., pp. 815-819, 2005.
[17] Sebastian Strobel, Christopher Kirkendall, Jae-Byum Chang and Karl K Berggren, “Sub-10 nm structures on silicon bythermal dewetting of platinum,” Nanotechnology vol. 21, 2010.
[18] Masahiko Yoshino, Hiroki Osawa and Akinori Yamanaka, “Effects of process conditions on nano-dot array formation by thermal dewetting,” Journal of Manufacturing Processes vol. 14, pp. 478-486, 2012.
[19] Ruiyuan Liu, Fute Zhang, Celal Con, Bo Cui and Baoquan Sun, “Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching,” Nanoscale Research Letters vol. 8, pp. 155-162, 2013.
[20] Zhipeng Huang, Nadine Geyer, Peter Werner, Johannes de Boor and Ulrich Gösele, “Metal-Assisted Chemical Etching of Silicon: A Review,” Advanced Materials vol. 23, pp. 285-308, 2011.
[21] C. Chartier, S. Bastide and C. Le’vy-Cle’ment, “Metal-assisted chemical etching of silicon in HF-H2O2,” Electrochimica Acta vol. 53, pp. 5509-5516, 2008.
[22] R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” Journal of Applied Physics vol. 71, 1992.
[23] R. M. Tiggelaar, D. B. Thakur, H. Nair, L. Lefferts, K. Seshan and J. G. E. Gardeniers, “Influence of thin film nickel pretreatment on catalytic thermal chemical vapor deposition of carbon nanofibers,” Thin Solid Films vol. 534, pp. 341-347, 2013.
[24] Robert C. Rossi, Ming X. Tan, and Nathan S. Lewis, “Size-dependent electrical behavior of spatially inhomogeneous barrier height regions on silicon,” Applied Physics Letters vol. 77, pp. 2698-2700, 2000.
指導教授 洪銘聰(Ming-Tsung Hung) 審核日期 2015-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明