博碩士論文 101328013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.144.48.135
姓名 許乃文(Nai-Wen Hsu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 直渠道顆粒流之顆粒密度分離效應
(Density-difference-driven segregation)
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響★ 移動式顆粒床過濾器應用於去除PM2.5之研究
★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究★ 添加微量液體對振動床中顆粒體分離現象的影響
★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究★ 二維剪力槽中顆粒體群聚現象之研究探討
★ 粉粒體於儲槽排放行為及氣泡現象之研究★ 初始體積占有率影響顆粒崩塌行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以實驗的方式研究不同密度相同尺寸(3 mm)之球形顆粒體,於傾斜直渠道中流動所造成的顆粒密度分離現象,並改變渠道傾斜角及顆粒密度比等實驗控制參數,初始狀態為兩種顆粒等體積均勻混合狀態,隨著重力驅動所造成顆粒崩塌流場,重顆粒向渠道底部擠壓,輕顆粒向上堆積至自由表面,最後達成輕重顆粒之完全分離狀態。本實驗針對渠道側面拍攝連續影像,量測流場中輕重顆粒二維濃度分布,並以體積權重的方式計算出輕重顆粒之速度及顆粒溫度場,以觀測輕重顆粒從混合狀態至分離狀態之運動行為以及相關物理機制。
  實驗結果顯示輕重顆粒分離程度,會隨著密度比增加而上升,且流場之傾斜角越低分離程度越佳,顆粒濃度純層(pure layer)沿著流動方向越來越厚,兩種顆粒之水平速度差隨著流動方向越來越大;垂直速度差在特定位置之前隨著流動方向越來越小,輕顆粒之顆粒溫度略大於重顆粒。在低平均福祿數時流場中產生靜止層(fixed layer),我們也探討此現象對分離效應的影響。
摘要(英) The aim of this work is to experimentally investigate how a binary granular mixture made up of spherical glass beads behave when flowing down a straight chute. The mixture was composed by equal sized (3 mm) particles but with two different densities. Four different inclinations combining with two different density ratios are tested. Initially, a binary granular mixture is uniformly mixed. The heavier particles sink to lower levels in the flowing layer while the lighter ones rise toward the top due to the effects of gravity and buoyancy. Finally, the flow becomes completely separated. Processing the sidewall, we are able to measure the evolution of the 2-D concentration and velocity profiles. The volume averaged velocity field of two particles, and granular temperature field are calculated. They help to understand the physical mechanism and dynamic behavior of particles form mixture to segregation.
The results show that the intensity of segregation increases with increasing the density ratio of particles, and decrease with increasing the inclinations. The pure-layer, composed of a single constitution, thickens along the direction of flow. Streamwise velocity difference of two particles increases along the direction of flow. And, transverse velocity difference of two particles, before a specific location, decreases along the direction of flow. Granular temperature of lighter particles is slightly larger than heavier ones. Moreover, fixed layer generates if the average Froude number is small. The segregation effect in this state also discussed.
關鍵字(中) ★ 密度分離
★ 顆粒流
★ 崩塌流場
★ 二維濃度
★ 體積權重速度
關鍵字(英) ★ Density segregation
★ Granular flow
★ Avalanche
★ 2-D Concentration
★ Volume weighted velocity
論文目次 摘要 I
ABSTRACT II
目錄 III
附圖目錄 V
附表目錄 VIII
符號說明 IX
第一章 簡介 1
1-1 前言 1
1-2 顆粒崩塌流介紹 2
1-3 崩塌流中分離現象之研究 3
1-3-1 尺寸分離(Size segregation) 4
1-3-2 密度分離(Density segregation) 5
1-4 顆粒分離理論 6
1-5 研究動機 10
1-6 研究方向與架構 11
第二章 實驗方法與原理 12
2-1 實驗設備 12
2-2 實驗原理與方法 14
2-2-1 流場濃度分析 14
2-2-2 流場速度分布計算 15
2-2-3 粒子溫度分析 17
2-3 實驗步驟 18
第三章 結果與討論 21
3-1 流場濃度 21
3-1-1 三等分流場重顆粒濃度於流動方向之變化 22
3-1-2 顆粒濃度場圖 23
3-2 流場速度 23
3-2-1 流場速度分布 24
3-2-2 輕重顆粒深度平均速度 25
3-3 福祿數與質量流率 26
3-3-1 福祿數 27
3-3-2 質量流率 28
3-4 顆粒溫度場分布 29
第四章 結論與建議 31
4-1 結論 31
4-2 建議 32
參考文獻 33

參考文獻 1. Richard, P., “Slow relaxation and compaction of granular systems,” Nature Materials 4, pp. 121–128, 2005.
2. Bagnold, R. A., “The Physics of Blown Sand and Desert Dunes,” Methuen, London, 1941.
3. Ng, C. W. W., and Shi. Q., “A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage,” Computers and Geotechnics, Vol. 22(1), pp. 1-28, 1998.
4. Campbell, C. S. and Brennen, C. E., “Chute flow of granular material:some computer simulation,” J. Fluid Mech., Vol. 52, pp. 72-178, 1982.
5. Jaeger, H. M., and Nagel, S. R., “Physics of the Granular State,” Science, Vol. 255, pp. 1523-1531, 1992.
6. Duran. J., “Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials,” Springer Verlag, 2000.
7. Goldhirsch. I., “Rapid granular flows,” Annu. Rev. Fluid Mech., Vol. 35, pp. 267-293, 2003.
8. Ottino, J. M., and Khakhar, D. V., “Mixing and segregation of granular materials,” Annual Review of Fluid Mechanics, Vol. 32, pp. 55-91, 2000.
9. Kudrolli, A., “Size separation in vibrated Granul,” Reports on Progress Physics, Vol.67, pp. 209-247, 2004.
10. Hogg, R., “Mixing and Segregation in Powders: Evaluation, Mechanisms and Processes,” KONA Powder and Particle Journal, No.27, 2009.
11. Rosato, A., Strandburg, K. J., Prinz, F., and Swendsen, R. H., “Why the Brazil nuts are on top: size segregation of particulate matter by shaking,” Physical Review Letters, Vol. 58, pp. 1038-1040, 1987.
12. Savage, S. B. and Lun, C. K. K., “Particle Size Segregation in Inclined Chute Flow of Dry Cohesionless Granular Solids,” J. Fluid Mech., Vol. 189, pp. 311-335, 1988.
13. Wiederseiner, S., Andreini, N., Epely-Chauvin, G., Moser, G., Monnereau, M., Gray, J.M.N.T., Ancey, C., “Experimental investigation into segregating granular flows down chutes,” Phys. Fluids., Vol. 23, pp. 013301, 2011.
14. Gray, J. and Chugunov, V., “Particle-size segregation and diffusive remixing in shallow granular avalanches,” J. Fluid Mech., pp. 569-365, 2006.
15. Marks, B., Rognon, P. and Einav, I., “Grainsize dynamics of polydisperse granular segregation down inclined planes.” J. Fluid Mech., Vol. 690, pp. 499-511, 2012.
16. Thornton, A., Weinhart, T., Luding, L. and Bokhove, O., “Modelling of particle mixing and segregation in the transverse plane of a rotary kiln.” Int. J. Mod. Phys., Vol. 23, pp 1240014, 2012.
17. Ristow, G. H., “Particle mass segregation in a two-dimensional rotating drum,” Europhys Lett., Vol. 28, pp. 97-101, 1994.
18. Jain, N., Ottino, J. M., and Lueptow, R. M., “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granular Matter, Vol. 7, pp.69-81, 2005.
19. Shi, Q. F., Sun, G., Hou, M., and Lu, K. Q., “Density-driven segregation in vertically binary granular mixture,” Physical Review E, Vol. 75, 061302, 2007.
20. Hsiau, S. S. and Yu, H. Y., “Segregation phenomena in a shaker,” Powder Technol., Vol. 93, pp. 83-88, 1997.
21. Anurag Tripathi and Khakhar, D. V., “Density difference-driven segregation in a dense granular flow,” J. Fluid Mech., Vol. 717, pp. 643-669, 2013.
22. Sarkar, S., and Khakhar, D. V., “Experimental evidence for a description of granular segregation in terms of the effective temperature, ” Europhys . Lett. 83 (5), 54004, 2008.
23. Berthier, L. and Barrat, J. L., “Shearing a glassy material: numerical tests of nonequilibrium mode-coupling approaches and experimental proposals, ” Phys. Rev. Lett. 89, 095702, 2002.
24. Dolgunin, V. N. and Ukolov, A. A., “Segregation modelling of particle rapid gravity flow, ” Powder Technol.,Vol. 83,pp. 95-103, 1995.
25. Marks, B., Rognon, P. and Einav, I., “Grainsize dynamics of polydisperse granular segregation down inclined planes, ” J. Fluid Mech.,Vol. 690, pp. 499-511, 2012.
26. Khakhar, D. V., Mccarthy, J. J. and Ottino, J. M., “Radial segregation of granular materials in a rotating cylinder,” Phys Fluids Vol. 9, pp. 3600-3614, 1997.
27. Khakhar, D. V., Mccarthy, J. J. and Ottino, J. M., “Mixing and segregation of granular materials in chute flows,” Chaos, Vol. 9, pp. 594-610, 1999.
28. Song, C., Wang, P. and Makse, H. A., “Experimental measurement of an effective temperature for jammed granular materials,” Proc. Natl Acad. Sci. USA, Vol. 102, pp.2299, 2005.
29. Hanes, D. M., and Walton, R., “Simulations and physical measurements of glass spheres flowing down a bumpy incline, ” Powder Technol.,Vol. 109, pp. 133-144, 2000.
30. Pudasaini, S. P., Hutter, K., Hsiau, S. S., Tai, S. C., Wang, Y., and Katzenbach, R., “Rapid flow of dry granular materials down inclined chutes impinging on rigid walls, ” Phys. Fluid, Vol. 19, pp. 053302, 2007.
31. Pudasaini, S. P., Hsiau, S. S., Wang, Y. Q., and Hutter, K., “Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions, ” Phys. Fluids, Vol. 17, 093301, 2005.
32. Adrian, Ronald J., “Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry, ” Applied Optics, Vol. 25, pp. 3855-3858, 1986.
33. Nobach, H., and Tropea, C., “Improvements to PIV image analysis by recognizing the velocity gradients,” Experiments in Fluids, Vol. 39, pp. 612-620, 2005.
34. Ogawa, S., “Multi-temperature theory of granular materials, ” In Proceedings of US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Tokyo, 1978
35. Hanes, D. M., and Walton, R., “Simulations and physical measurements of glass spheres flowing down a bumpy incline, ” Powder Technol.,Vol. 109, pp. 133-144, 2000.
36. Boateng, A. A. and Barr, B. V., “Modeling of particle mixing and segregation in the transverse plane of a rotary kiln, ” Chem. Eng. Sci., Vol. 51, pp. 4167-4181, 1996.
37. Ingram, A., Seville, J.P.K., Parker, D.J., Fan, X. and Forster, R.G., “Axial and radial dispersion in rolling mode rotating drums, ” Powder Technol., Vol. 158, pp. 76-91, 2005.
38. Socie, B. A., Umbanhowar, P., Lueptow, R. M., Jain, N. and Ottino, J. M.,” Creeping motion in granular flow, ” Phys. Rev. E, Vol. 71, 031304, 2005.
39. Cagnoli, B.; Romano, G. P., ” Vertical segregations in flows of angular rock fragments: Experimental simulations of the agitation gradient within dense geophysical flows ” J. Volcanol. Geotherm. Res. Vol. 265, pp. 52-59, 2013.
40. 邱上育,「半圓柱阻礙物對重力驅動顆粒流場之影響」,國立中央大學,碩士論文,民國100年。
41. 胡育明,「剪力顆粒流中密度分離效應對顆粒環沉降的影響」,國立中央大學,碩士論文,民國100年。
42. 楊言誌,「離散元素法模擬於重力驅動顆粒流場之研究」,國立中央大學,碩士論文,民國102年。
指導教授 蕭述三(‎Shu-San Hsiau) 審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明