博碩士論文 101328015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:54.80.173.217
姓名 吳家寧(Jia-ning Wu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
(Analysis of GaN film growth via MOCVD in vertical reactor)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析
★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析
★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析
★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析★ MOCVD 行星式腔體之模型建立與傳輸現象分析
★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析
★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究★ 二段陽極處理法應用於鈦薄膜成長之研究
★ 交流電發光二極體之接面溫度與熱阻量測研究★ 液滴於具溫度梯度的微流道之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 有機金屬化學氣相沉積法(Metal organic chemical vapor deposition, MOCVD)是其中一種生長半導體薄膜的方法,其為發光二極體(LED)製程中重要的關鍵技術。在其製程中,膜厚的均勻性及生長速率攸關LED的效率與品質。本研究採用COMSOL Multiphasics商用軟體針對Veeco TurboDisc E400LDM垂直式腔體進行二維軸對稱及三維模擬,探討三甲基鎵(TMG)及氨氣(NH3)反應生成氮化鎵(GaN)的過程中,氣相化學反應式、製程參數及進氣入口設計對薄膜生長速率及膜厚均勻性的影響。
本研究為了簡化模擬的複雜度及以找尋主要主導薄膜生長的化學反應式,首先,先進行氣相反應式的簡化,藉由阿瑞尼斯式方程式(Arrhenius equation)歸類出5條影響薄膜生長速率的反應式。
接著,探討製程參數,如氣體流量(50-200 slm)、載盤轉速(500-1500 rpm)、腔體壓力(10-70 Torr)以及生長溫度(900-1100℃),對薄膜生長速率及均勻性的影響。模擬結果顯示改變載盤加熱溫度的影響並不明顯;而增加氣體流量可提高薄膜生長速率,但會使均勻性變差;提高載盤轉速及腔體壓力可使邊界層變薄、加快物種擴散,使氣體分布均勻進而得到較好生長速率及膜厚均勻性,但是高轉速及高壓力下,容易在側壁及入口處形成渦旋而導致流場不穩定。
最後,針對進氣入口做優化設計,結果顯示增加入口slot jets數量,可明顯使腔體流場變穩定。同時探討了物種排列方式,對稱排列式設計(入口1)容易使氣體擴散不易,降低薄膜生長速率,而間距排列式設計(入口2)可改善此問題。
摘要(英) Metal organic chemical vapor deposition (MOCVD), one of the important techniques in the manufacturing process of light emitting diode (LED), is a method of growing film on semiconductor. The uniformity of the film is relevant to efficiency and quality of LED. The study investigates GaN growth from trimethyl-gallium and ammonia. It also simulates the 2D axisymmetric and 3D Veeco E400LDM vertical rotation reactor by using commercial computational software, COMSOL. Simulations were performed to study the effect of key design parameters of GaN film growth rate and uniformity, such as chemical reactions, process parameters and design of gas inlet.
In order to simplify the simulation and to find the main chemical reactions leading to film growth, the study was first conducted to explore the gas-phase reactions mechanism.
After that, the study investigated the effect of tuning these manufacturing parameters, such as gas flow rate (50-200 slm), wafer carrier rotation rate (500-1500 rpm), chamber pressure (10-70 Torr), and growth temperature (900-1100℃), on the growth rate and film thickness uniformity. The results showed no significant effects of heating temperature on the growth rate and uniformity. The increase of gas flow rate improves the growth rate of the film but makes deterioration of uniformity. Moreover, enhancing the wafer carrier rotation rate and chamber pressure can allow the boundary layer thinning and accelerate the diffusion of specie, to get a better growth rate and film thickness uniformity. However, the higher speed and higher pressure easily induced the vortex in the side wall and the entrance. It cause instability in the flow field.
Finally, the study of optimization of the gas inlets was done. The results show that increasing the number of slot jets, the fluid flow can be significantly stabilized. The arrangement of species was also been studied. The symmetric arrangement design doesn’t enhance any diffusion of gas. It reduced the growth rate of the film. However, the staggered design can solve this problem.
關鍵字(中) ★ 有機金屬化學氣相沉積法
★ 垂直式旋轉載盤反應腔體
★ 氮化鎵
關鍵字(英) ★ MOCVD
★ Vertical rotating-disk reactor
★ Gallium nitride (GaN)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xii
符號說明 xiii
第一章 緒論 1
1-1 前言 1
1-2 薄膜生長原理 1
1-3 化學氣相沉積反應步驟 3
1-4 MOCVD反應腔體與進氣系統分類 4
1-5 文獻回顧 5
1-6 研究動機與目的 9
第二章 研究方法 15
2-1 物理系統 15
2-2 基本假設 15
2-3 混合氣體物理參數 16
2-4 數學模式與邊界條件 18
2-4-1 統御方程式 18
2-4-2 邊界條件 19
2-5 化學反應方程與沉積速率 20
2-5-1 化學反應速率 20
2-5-2 化學反應路徑 22
2-5-3 薄膜沉積速率 24
第三章 數值方法 32
3-1 COMSOL Multiphasics 32
3-2 網格配置 32
3-3 收斂性測試 33
第四章 結果與討論 37
4-1 氣相反應式對薄膜生長速率之影響 37
4-2 製程參數之探討 38
4-2-1 進氣流量之影響 38
4-2-2 載盤轉速之影響 39
4-2-3 腔體壓力之影響 40
4-3 新型進氣系統設計 41
4-4 新型進氣系統之製程參數探討 42
4-4-1 改變氣體流量 42
4-4-2 改變載盤轉速 42
4-4-3 改變載盤溫度 43
4-5 新型進氣系統之改變腔體壓力 43
4-6 氣相反應之生長速率驗證 44
第五章 結論與未來方向 72
5-1 結論 72
5-2 未來方向 73
參考文獻 74
參考文獻 [1] 莊達人, "VLSI 製造技術," 高立圖書有限公司, 1996.
[2] 羅文雄, "半導體製造技術," 滄海圖書資訊股份有限公司, 2011.
[3] K. Kim, S.K. Noh, "Reactor design rules for GaN epitaxial layer growths on sapphire in metal–organic chemical vapour deposition," Semicond. Sci. Technol., vol. 15, pp. 868-874, 2000.
[4] M. Dauelsberg, E.J. Thrush, B. Schineller, J. Kaeppeler, "Technology of MOVPE Production Tools," Elsevier Ltd., pp. 39-68, 2004.
[5] B. Mitrovic, A. Gurary, L. Kadinski, "On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters," Journal of Crystal Growth, vol. 287, pp. 656-663, 2006.
[6] L. Kadinski, V. Merai, A. Parekh, J. Ramer, E.A. Armour, R. Stall, A. Gurary, A. Galyukov, Yu. Makarov, "Computational analysis of GaN/InGaN deposition in MOCVD vertical rotating disk reactors," Journal of Crystal Growth, vol. 261, pp. 175-181, 2004.
[7] A. Lobanova, K. Mazaev, E. Yakovleva, R. Talalaev, A. Galyukov, Yu. Makarov, D. Gotthold, B. Albert, L. Kadinski, B. Peres, "Parametric studies of III-nitride MOVPE in commercial vertical high-speed rotating disk reactors," Journal of Crystal Growth, vol. 266, pp. 354-362, 2004.
[8] B. Mitrovic, A. Parekh, J. Ramer, V. Merai, E.A. Armour, L. Kadinski, A. Gurary, "Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors," Journal of Crystal Growth, vol. 289, pp. 708-714, 2006.
[9] B. Mitrovic, A. Gurary, W. Quinn, "Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling," Journal of Crystal Growth, vol. 303, pp. 323-329, 2007.
[10] C.H. Lin, W.T. Cheng, J.H. Lee, "Effect of embedding a porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling," International Communications in Heat and Mass Transfer, vol. 36, pp. 680-685, 2009.
[11] Y.H. Liu, L.W. Tseng, C.Y. Huang, K.L. Lin, C.C. Chen, "Particle image velocimetry measurement of jet impingement in a cylindrical chamber with a heated rotating disk," International Journal of Heat and Mass Transfer, vol. 65, pp. 339-347, 2013.
[12] M. G. Jacko, S.J.W. Price, "The pyrolysis of trimethyl gallium," Canadian Journal of chemistry, vol. 41, pp. 1560-1567, 1963.
[13] C. Theodoropoulos, T.J. Mountziaris, H.K. Moffat, J. Han, "Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy," Journal of Crystal Growth, vol. 217, pp. 65-81, 2000.
[14] D. Sengupta, "Does the Ring Compound [(CH3)2GaNH2]3 Form during MOVPE of Gallium Nitride? Investigations via Density Functional and Reaction Rate Theories," J. Phys. Chem., vol. 107, pp. 291-297, 2003.
[15] D. Sengupta, S. Mazumder, W. Kuykendall, S.A. Lowry, "Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth," Journal of Crystal Growth, vol. 279, pp. 369-382, 2005.
[16] R. Zuo, H. Yu, N. Xu, X. He, "Influence of Gas Mixing and Heating on Gas-Phase Reactions in GaN MOCVD Growth," ECS Journal of Solid State Science and Technology, vol. 1, pp. 46-53, 2012.
[17] S.A. Safvi, J.M. Redwing, M.A. Tischler, T.F. Kuech, "GaN Growth by Metallorganic Vapor Phase Epitaxy," J. Electrochem. Soc., vol. 144, pp. 1789-1796, 1997.
[18] B.E. Poling, J.M. Parusnitz, J.P. O′Connell, "The Properties of Gases and Liquids," 2001.
[19] W.K. Cho, D.H. Choi, M.U. Kim, "Optimization of the inlet velocity profile for uniform epitaxial growth in a vertical metalorganic chemical vapor deposition reactor " International Journal of Heat and Mass Transfer, vol. 42, pp. 4143-4152, 1999.
[20] C.Y. Shin, B.J. Beak, C.R. Lee, B. Pak, J.M. Yoon, K.S. Park, "Numerical analysis for the growth of GaN layer in MOCVD reactor," Journal of Crystal Growth, vol. 247, pp. 301-312, 2003.
[21] 莊博安, "金屬有機氣相沉積反應腔體之熱流場與質傳數值分析模擬," 國立中央大學, 2013.
指導教授 陳志臣(Jyh-chen Chen) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明