博碩士論文 101328016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.139.233.43
姓名 鄭又彰(Yu-Chang Cheng)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 電漿輔助石墨烯直接成長在Pt上成長機制
(Growth mechanism of graphene grown on Pt by plasma-assisted CVD)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯與超導金屬介面的電子穿隧行為
★ 石墨烯透明導電膜與其成長模型之研究★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究
★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究★ 快速退火影響石墨烯晶粒尺寸之研究
★ 電漿輔助低溫化學氣相沉積法直接成長石墨烯/金屬複合透明導電薄膜★ 快速退火生長高品質石墨烯
★ 改善石墨烯轉印品質之研究★ 暗場顯微鏡系統監控石墨烯成長之研究
★ 以射頻磁控濺鍍鍍製多層有機矽阻障層研究★ 真空聚合物薄膜在三維曲面研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 石墨烯是目前備受矚目的新興材料之一,擁有優異的電性及高穿透率,是一種可撓曲的透明導電薄膜,可望取代傳統透明導電膜如氧化銦錫(ITO)、氧化鋅鋁(AZO)等,但由於石墨烯成長製程需要催化金屬及高溫,而光電產品皆無法再承受高溫製程(1050 ℃),因此石墨烯要應用在透明導電薄膜上還有很大的挑戰,故本研究為了解決此問題,提出直接成長石墨烯在光電產品的方式,首先成長很薄的鉑膜(< 10 nm)作為成長石墨烯之催化金屬薄膜,很薄是因為要保持透明度,再引入電漿輔助低溫(< 350 ℃)化學氣相沉積法,直接製作石墨烯/鉑膜複合的透明導電薄膜。
本論文主要是分析探討濺鍍法與原子層沉積法所成長的鉑膜在不同製程溫度下成長石墨烯的結果,利用霍爾量測儀量測石墨烯電性;利用原子力顯微鏡觀察石墨烯表面結構;利用拉曼分峰及簡易X射線光電子能譜儀分峰探討石墨烯結晶特質和製程後元素組成。使用原子層沉積法得到穿透率約為89 % @ 550 nm的鉑膜,再利用電漿輔助化學氣相沉積法在250 ℃成長石墨烯,其電阻率為3.347×10-2 ohm-cm,穿透率維持在89 % @ 550 nm,完成可直接成長在光電產品之透明導電薄膜的研究。
摘要(英) Graphene is a new material for flexible transparent conductive film, it has excellent electrical properties and high transmittance. It will expect to replace the traditional transparent conductive film such as indium tin oxide (ITO), oxidation zinc aluminum (AZO), etc., graphene to be applied on the transparent conductive film there is a great challenge because of graphene growth process needs a catalytic metal and high grow temperature. This plan direct growth a graphene / platinum transparent conductive composite film in optoelectronic in order to solve this problem. production of First grow a thin platinum film (<10 nm) as the catalytic metal thin film and growth of graphene by plasma enhanced low temperature (<350 ℃) chemical vapor deposition.
The plan is to analyze and explore graphene is grow at different temperatures on platinum film by the sputtering and atomic layer deposition method. Using Hall measurement to measure electrical properties of graphene; using atomic force microscopy to measure the surface structure of graphene; using Raman and simple X-ray photoelectron spectroscopy to explore the crystallization characteristics of graphene. We obtain the platinum film has transmittance 89% @ 550 nm by atomic layer deposition method. Growing graphene by plasma assisted chemical vapor deposition method at 250 ℃. The resistivity of graphene / platinum transparent conductive composite film was 3.347 × 10-2 ohm-cm and transmittance remained at 89% @ 550 nm.
關鍵字(中) ★ 石墨烯
★ 電漿輔助化學氣相沉積法
關鍵字(英) ★ Graphene
★ PECVD
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究架構 3
第二章 基礎理論文獻回顧 5
2-1 石墨烯 5
2-2 透明導電薄膜 8
2-3 原子層沉積技術 10
2-4 電漿源原理及濺鍍法 11
2-5 石墨烯製備方法 13
2-5-1 機械剝離法 14
2-5-2 碳化矽磊晶法 15
2-5-3 氧化石墨烯還原法 15
2-5-4 化學氣相沉積法 16
2-5-5 電漿輔助化學氣相沉積法 18
2-6 金屬薄膜成長石墨烯 21
2-7 選用鉑作為CVD製程之金屬薄膜 24
第三章 實驗方法與儀器介紹 26
3-1 石墨烯製程 26
3-1-1電漿輔助化學氣相沉積法製程介紹 26
3-1-2成長石墨烯 27
3-2 分析儀器 27
3-2-1 四點探針 28
3-2-2 拉曼光譜儀 28
3-2-3 X射線光電子能譜儀 31
3-2-4 可見光光譜儀 31
3-2-5 原子力顯微鏡 32
3-2-6 霍爾量測儀 33
第四章 結果與討論 34
4-1 濺鍍法鉑膜成長石墨烯之分析 34
4-1-1 不同溫度下成長石墨烯之比較(~ 67 % @ 550 nm) 34
4-1-2 成長製程後退火之比較 38
4-1-3不同溫度下成長石墨烯之比較(~ 73 % @ 550 nm) 41
4-2 ALD法鉑膜成長石墨烯之分析(~ 89 % @ 550 nm) 44
4-3拉曼分峰之分析 47
4-3-1 濺鍍法鉑膜成長石墨烯拉曼分峰之分析(~ 67 % @ 550 nm) 48
4-3-2 成長製程後退火拉曼分峰之分析 51
4-3-3濺鍍法鉑膜成長石墨烯拉曼分峰之分析(~ 73 % @ 550 nm) 54
4-3-4 ALD法鉑膜成長石墨烯拉曼分峰之分析(~ 89 % @ 550 nm) 57
4-4 濺鍍法與ALD法之比較分析 59
4-4-1 拉曼分峰法分析 60
4-4-2 XPS分峰法分析 62
第五章 結論 64
參考文獻 67
參考文獻 [1] HW Kroto, JR Heath, SC O′Brien, RF Curl, RE Smalley C60:buckminsterfullerene. Nature (1985) 318:162-3.
[2] S. Iijima, Helical microtubules of graphitic carbon. Nature( 1991) 354:56-58.
[3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science (2004) 306:666-669.
[4] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials (2007) 6:183-191.
[5] J.S. Bunch, Mechanical and electrical properties of graphene sheets, in, 2008.
[6] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science (2008) 320:1308.
[7] K.I. Bolotina, K.J. Sikes, Z. Jiang, M. Klimac, G. Fudenberga, J. Honec, P. Kima, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications (2008) 146 351-355.
[8] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett.,(2008),8:902–907.
[9] I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, Mechanical properties of suspended graphene sheets, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures (2007) 25:2558-2561.
[10] G. Jo, M. Choe, S. Lee, W. Park, Y.H. Kahng, T. Lee, The application of graphene as electrodes in electrical and optical devices, Nanotechnology (2012) 23:112001.
[11] L. Colombo, X. Li, B. Han, W. Cai, Y. Zhu, R.S. Ruoff, Growth kinetics and defects of CVD graphene on Cu, The Electrochemical Society (2010) 5:109-114.
[12] R. Martinazzo, S. Casolo, G.F. Tantardini, The effect of atomic-scale defects and dopants on graphene electronic structure, in: D.S. Mikhailov (Ed.) Physics and Applications of Graphene - Theory, (2011) arXiv:1104.1302.
[13] S. Ulstrup, M. Bianchi, R. Hatch, D. Guan, A. Baraldi, D. Alf, L. Hornekær, P. Hofmann, High-temperature behaviour of supported graphene: electron-phonon coupling and substrate-induced doping, Physical review B, (2012) 86: 161402.
[14] A. Kasry, M.A. Kuroda, G.J. Martyna, G.S. Tulevski, A.A. Bol, Chemical doping of large-area stacked graphene films for use as transparent,conducting electrodes, ACS Nano, (2010) 4:3839-3844.
[15] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, C. V. Haesendonck Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology (2008) 19:305604.
[16] A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Substrate-free gas-phase synthesis of graphene sheets. Nano Lett., (2008) 8:2012-2016.
[17] A.K. Geim, Graphene: status and prospects, Science, 324 (2009) 1530-1534.
[18] A. Bostwick, J. McChesney, T. Ohta, E. Rotenberg, T. Seyller, K. Horn, Experimental studies of the electronic structure of graphene, in, (2009) 84:380-413.
[19] A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics, 81 (2009) 109-162.
[20] S. Reich, J. Maultzsch, C. Thomsen, P. Ordejón, Tight-binding description of graphene, Physical Review B, (2002). 66:035412.
[21] A. Teng, Physical properties of carbon nanotubes, in, 2010.
[22] F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics, Nature Photonics, (2010). 4:611-622.
[23] E.Y. Andrei, G. Li, X. Du, Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport, Rep Prog Phys, (2012) 75:056501.
[24] BluestoneGlobalTech, Graphene Applications: thin, flexible touch panel/display, LED and batteries, in, Youtube, 2013.
[25] 楊明輝,透明導電膜 (2006)
[26] Picosun公司
[27] 國研院儀器科技研究中心
[28] L Tonks, I Langmuir, A General Theory of the Plasma of an Arc, Phys,(1929) Rev. 34, 876.
[29] J.R.Roth, Industrial plasma engineering-Volume 1 : Principles Institute of Physics.(1995)
[30] J. Hopwood, Review of inductively coupled plasmas for plasma processing, Plasma Sources Science and Technology, (1992).
[31] S Matsuo, M Kiuchi, Low temperature chemical vapor deposition method utilizing an electron cyclotron resonanceplasma, Japanese journal of applied physics, (1983) ,22, L210.
[32] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, and Y. Zhang, Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Lett., (2010), 10 (5), pp 1542-1548.
[33] Y. H. Lee and J. H. Lee, Scalable growth of free-standing graphene wafers with copper(Cu) catalyst on SiO2-Si substrate : Thermal conductivity of the wafers. Applied Physics Letters 96, (2010), 083101.
[34] A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces. Nano Res, (2009) 2: 509 516.
[35] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, (2009),706-710.
[36] E. Sutter, P. Albrecht, and P. Sutter, Graphene growth on polycrystalline Ru thin films. Applied Physics Letters 95, (2009), 133109.
[37] B. J. Kang, J. H. Mun, C. Y. Hwang, and B. J. Cho, Monolayer graphene growth on sputtered thin film platinum. Journal of Applied Physics 106,(2009), 104309.
[38] K. Xiao, H. Wu, H. Lv, X. Wu and H. Qian, The study of the effects of cooling conditions on high quality graphene growth by the APCVD method. Nanoscale, (2013), 5, 5524.
[39] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao & H. M. Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Communications 3:699.(2012).
[40] P. Sutter, J. T. Sadowski, and E. Sutter, Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 80, 245411.(2009).
[41] Carbon Wonderland, Scientific American, (2008), 298:90-97.
[42] W.A.D. Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Epitaxial graphene, Solid State Communications, (2007), 143:92-100.
[43] S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, R. S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem, 2006, 16(2):155-158.
[44] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv Mater, (2010) 22:3906-3924.
[45] H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide. Chemical Physics Letters (1998). 287:53–56.
[46] K. Xiao, H. Wu, H. Lv, X. Wu, H. Qian, The study of the effects of cooling conditions on high quality graphene growth by the APCVD method. Nanoscale, (2013), 5:5524–5529.
[47] Q. Yu, J. Lian, S. Siriponglert, H Li, Y.P. Chen, S.S Pei, Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters 93, 113103 (2008).
[48] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, Chemical
vapor deposition of thin graphite films of nanometer thickness. Carbon 45,2017–2021 (2007).
[49] A. Reina, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett., (2009), 9 (1), 30-35.
[50] S.H. Chan, S.H. Chen, W.T. Lin., M.C. Li, Y.C. Lin and C.C. Kuo, Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition. Nanoscale Research Letters (2013), 8:285.
[51] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel and C. V. Haesendonck, Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology, (2008) 19:305604.
[52] T Yamada, M Ishihara, J Kim, M Hasegawa, S Iijima, A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294mm width graphene films at low temperature. Carbon 50 (2012) 2615-2619.
[53] G. Kalita, K. Wakita and M. Umeno, Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application, RSC Advances, (2012), 2:2815-2820.
[54] J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl. Phys. Lett. 98, 091502, (2011).
[55] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Physics Reports, 473 (2009) 51-87.
[56] Z. Yan, A.R. Barron, Characterization of Graphene by Raman Spectroscopy. http://cnx.org/content/m34667/latest/.
[57] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Poschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43, (2005) ,1731-1742.
[58] XPS Interpretation of Carbon. http://xpssimplified.com/elements/carbon.php
[59] Q.L. Zhu, J. Yang, S.F. Ji, J.X. Wang, H.Q. Wang, Progress of Transition Metal Carbides in Heterogenous Catalysis. Progress in Chemistry, 2004, Vol.16, (03) : 382-385.
[60] RB Levy, M Boudart, Platinum-like behavior of tungsten carbide in surface catalysis. Science Magazine,(1973), 181 (4099): 547-549
指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2014-12-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明