博碩士論文 101328018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.226.34.215
姓名 羅士傑(Shih-Chieh Lo)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 利用脈衝雷射成長奈米結構之氧化鐵薄膜應用於光電化學產氫
(Growth of hematite nanostructure film for photoelectrochemial hydrogen production by pulsed laser deposition)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用脈衝雷射濺鍍沉積(Pulsed-laser deposition method, PLD)製備
氧化鐵奈米柱陣列薄膜於FTO 導電玻璃上,再利用熱處理法以進行晶體結
構之強化,並探討以脈衝雷射濺鍍沉積製備氧化鐵機制以及熱處理各項參
數的改變對氧化鐵薄膜物理特性及光電化學性質的影響。
以X-ray 繞射分析儀檢測,氧化鐵薄膜經由PLD 與熱處理之晶體結構
變化,發現PLD 之雷射通量100 J/cm2 有優選[110]。以掃描式電子顯微鏡觀
察沉積之奈米柱結構的表面型態及側面的柱狀結構,則PLD 之氧壓16
Pa~29 Pa 有奈米柱陣列的產生。以紫外光/可見光/近紅外光光譜儀檢測不同
奈米柱陣列對光吸收性之影響,則奈米柱內部之氧化鐵顆粒由圓形到長條
形的階段,光吸收率會逐漸上升。在光電化學量測上,以1 M 的KOH 水溶
液為電解液,由Mott-Schottky 分析得知隨著熱處理之氧壓下降,其載子濃
度越高,有利於電化學反應的產生;以AM 1.5 太陽光模擬器,氧化鐵薄膜
相對於參考電極Ag/AgCl 之偏壓0 V 時,最佳的光電流密度值為0.13
mA/cm2。
摘要(英) Pulsed laser deposition (PLD) was used to prepare α-Fe2O3 nanorod array
thin film on FTO glass, followed by annealing to improve crystal structure.
Effects of PLD parameters and annealing parameters on the physical properties
and photoelectrochemical properties of α-Fe2O3 film are also investigated.
By comparing crystal structures using XRD analysis for different PLD and
annealing parameters, we found PLD fluence of 100 J/cm2 resulted in crystals
with [110] preference. Using SEM to observe the surface and cross-sectional
morphology of α-Fe2O3 nanorod, we found PLD oxygen pressure of 16 Pa to 29
Pa successfully grow nanorod array thin film. In addition, we found that the
absorption coefficient increases when the gran shape of α-Fe2O3 changes from
spherical to ellipsoidal. From Mott-Schottky analysis, carrier density is found to
increase as the oxygen pressure in annealing process decreases. Under AM 1.5
solar irradiation, the photocurrent density is found to be 0.13 mA/cm2 with zero
applied potential vs. Ag/AgCl.
關鍵字(中) ★ 脈衝雷射沉積法
★ 光電化學產氫
★ 奈米結構
★ 氧化鐵
關鍵字(英) ★ Pulsed laser deposition
★ Photoelectrochemical hydrogen production
★ nanostructure
★ Hematite
★ α-Fe2O3
論文目次 中文摘要…………………………………………………………………………I
Abstract…………………………………………………………………………II
目錄…………………………………………………………………………….III
圖目錄…………………………………………………………………………VII
表目錄…………………………………………………………………………..X
第一章、 緒論…………………………………………………………………..1
1.1. 研究背景………………………………………………………………….1
1.2. 研究動機………………………………………………………………….2
第二章、 文獻回顧……………………………………………………………..4
2.1. 光電化學水分解…………………………………………………………...4
2.2. 半導體光觸媒……………………………………………………………...5
2.2.1. 半導體能帶理論…………………………………………………………6
2.2.2. 半導體水溶液介面性質…………………………………………………8
2.2.3. 目前常見的半導體光觸媒材料………………………………………..11
2.3. 氧化鐵光觸媒…………………………………………………………….12
2.4. 奈米材料………………………………………………………………….15
2.4.1. 奈米材料之維度………………………………………………………..15
2.4.2. 奈米材料之特性………………………………………………………..16
2.4.3. 奈米材料之應用………………………………………………………..18
2.5. 脈衝雷射濺鍍沉積法…………………………………………………….18
2.6. 熱處理…………………………………………………………………….19
2.7. 研究目的………………………………………………………………….20
第三章、 實驗方法……………………………………………………………21
3.1. 靶材、基材、氣體及實驗藥品………………………………………….21
3.1.1. 靶材準備………………………………………………………………..21
3.1.2. 基材準備………………………………………………………………..21
3.1.3. 奈米結構薄膜製備……………………………………………………..21
3.1.4. 分析準備………………………………………………………………..21
3.2. 儀器設備………………………………………………………………….22
3.2.1. 靶材製備………………………………………………………………..22
3.2.2. 基材準備………………………………………………………………..22
3.2.3. 奈米結構薄膜製備……………………………………………………..22
3.2.4. 分析儀器………………………………………………………………..22
3.3. 實驗流程………………………………………………………………….23
3.3.1. 靶材製備………………………………………………………………..23
3.3.2. 基材準備………………………………………………………………..24
3.3.3. 脈衝雷射濺鍍沉積氧化鐵奈米結構薄膜……………………………..25
3.3.4. 熱處理…………………………………………………………………..27
3.3.5. 電極封裝……………………………………………………………..…27
3.4. 奈米結構薄膜之特性分析...……………………………………………..28
3.4.1. X-ray 繞射分析儀………………………………………………….........29
3.4.2. 紫外光-可見光-近紅外光光譜儀……………………………...………29
3.4.3. 場發射式電子顯微鏡…………………………………………..……....29
3.4.4. 恆電位儀………………………………………………………..….…...30
3.4.4.1. 光電流密度…………………………………………………..…….…30
3.4.4.2. Mott-Schottky…………………………………………………..……...31
3.4.4.3. 交流阻抗分析………………………………………………..…...…..32
第四章、 結果與討論…………………………………………………………34
4.1. 氧化鐵靶材製備參數研究……………………………………………….34
4.1.1. 粉末壓制靶材之壓力對靶材影響……………………………………..35
4.1.2. 靶材燒結之溫度對靶材影響…………………………………………..35
4.2. 脈衝雷射濺鍍沉積法製備氧化鐵薄膜研究…………………………….37
4.2.1. 雷射通量對薄膜之影響………………………………………………..38
4.2.2. 濺鍍沉積之氣氛對薄膜之影響………………………………………..42
4.3. 熱處理參數研究………………………………………………………….48
4.3.1. 熱處理溫度對薄膜影響………………………………………………..48
4.3.2. 熱處理氣氛對薄膜影響………………………………………………..54
4.4. 脈衝雷射濺鍍沉積時間對薄膜影響…………………………………….56
第五章、 結論與建議…………………………………………………………61
5.1. 結論……………………………………………………………………….61
5.2. 未來工作建議…………………………………………………………….62
文獻參考……………………………………………………………………….63
參考文獻 [1] A. Fujishima and K. Honda, ”Electrochemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, pp. 37-38, 1972.
[2] A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne and J. A. Glasscock, ”Efficiency of solar water-splitting using
semiconductor electrodes”, International Journal of Hydrogen Energy, Vol. 31, pp. 1999-2017, 2006.
[3] J. A. Glasscock, ”Nanostructured materials for photoelectrochemical hydrogen production using sunlight,” PhD thesis, School of Chemical Sciences and Engineering, University of New South Wales, 2008.
[4] A. Kudo, ”Photocatalysis and solar hydrogen production”, Pure and Applied
Chemistry, Vol. 79, pp. 1917-1927, 2007.
[5] M. R. Hoffmann, S. T. Martin and W. Choi, ”Environmental applications of semiconductor photocatalysis ”, Chemical Reviews, Vol. 95, pp. 69-96,
1995.
[6] T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, ”Photoelectrochemical hydrogen generation from water using solar energy”, International Journal
of Hydrogen Energy, Vol. 27(10), pp. 991-1022, 2002.
[7] R. V. D. Krol, Y. Liang and J. Schoonman, ”Solar hydrogen production with nanostructured metal oxides”, Journal of Materials Chemistry, Vol. 18, pp. 2311-2320, 2008.
[8] D. K. Bora, A. Braun and E. C. Constable, ” ”In rust we trust”. Hematite – the prospective inorganic backbone for artificial photosynthesis”, Energy & Environmental Science, Vol. 6, pp. 407-425, 2013.
[9] S. Zhan, D. Chen, X. Jiao and S. Liu, ”Facile fabrication of long α-Fe2O3, α-Fe and γ-Fe2O3 hollow fibers using sol-gel combined co-electrospinning
technology”, Journal of Colloid and Interface Science, Vol. 308, pp.265-270, 2007.
[10] S. S. Kulkarni and C. D. Lokhande, ”Structural, optical, electrical and dielectrical properties of electrosynthesized nanocrystalline iron oxide thin
films”, Materials Chemistry and Physics, Vol. 82, pp. 151-156, 2003.
[11] A. A. Akl, ”Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis”, Applied Surface Science, Vol. 233, pp. 307-319, 2004.
[12] 張智詠,以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫,國立中央大學能源工程研究所碩士論文,2010。
[13] M. Momirlan and T. N. Veziroglu, ”Current status of hydrogen energy ”, Renewable Sustainable Energy, Vol. 6, pp. 141-179, 2002.
[14] J. H. Kennedy and K. W. J. Frese, ”Photooxidation of water at α-Fe2O3 electrodes”, Journal of the Electrochemical Society, Vol. 125, pp. 709-714, 1978.
[15] C. J. Sartoretti, B. D. Alexer, R. Solarska and I. A. Rutkowska, ”Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes”, The Journal of Chemical Physics, Vol. 109, pp. 13685-13692, 2005.
[16] K. Itoh and J. O. Bockris, ”Stacked thin-film photoelectrode using iron oxide”, Journal of Applied Physics, Vol. 128, pp. 874-876, 1984.
[17] A. Mao, G. Y. Han and J. H. Park, ”Synthesis and photoelectrochemical cell properties of vertically grown -Fe2O3 nanorod arrays on a gold nanorod substrate”, Journal of Materials Chemistry, Vol. 20, pp. 2247-2250, 2010.
[18] A. Mao, W. J. Kim, J. K. Kim, K. Shin, G. Y. Han and J. H. Park, ”Surface roughened 1-D Au host nanorods for visible light induced photocatalyst”, Electrochimica Acta, Vol. 97, pp. 404- 408, 2013.
[19] J. Cao, T. Kako, N. Kikugawa and J. Ye, ”Photoanodic properties of pulsed-laser-deposited α-Fe2O3 electrode”, Journal of Physics D: Applied Physics, Vol. 43, pp. 325101, 2010.
[20] O. Zandi, B. M. Klahr and T. W. Hamann, ”Highly photoactive Ti-doped -Fe2O3 thin film electrodes: resurrection of the dead layer”, Energy & Environmental Science, Vol. 6, pp. 634-642, 2013.
[21] J. Liua, C. Liang, G. Xua, Z. Tiana, G. Shaob and L. Zhanga, ”Ge-doped hematite nanosheets with tunable doping level, structure and improved photoelectrochemical performance”, Nano Energy, Vol. 2, pp. 328-336,
2013.
[22] P. Kumar, P. Sharma, R. Shrivastav, S. Das and V. R. Satsangi, ”Electrodeposited zirconium-doped -Fe2O3 thin film for photoelectrochemical water splitting”, International Journal of Hydrogen Energy, Vol. 36, pp. 2777-2784, 2011.
[23] Y. S. Hu, A. K. Shwarsctein, A. J. Forman, D. Hazen, J. N. Park and E. W. McFarland, ”Pt-doped -Fe2O3 thin films active for photoelectrochemical water splitting”, American Chemical Society, Vol. 20, pp. 3803-3805, 2008.
[24] P. Liao, ”Mechanical, optical, transport, and catalytic properties of iron oxides from first principles”, A Dissertation Presented to the Faculty of
Princeton University in Candidacy for the Degree of Doctor of Philosophy, 2012.
[25] N. Iordanova, M. Dupuis and K. M. Rosso, ”Charge transport in metal oxides: A theoretical study of hematite -Fe2O3”, The Journal of Chemical Physics, Vol. 122, pp. 144305, 2005.
[26] 劉如熹,辛嘉芬,陳浩銘,「奈米材料的製作與應用-陽極氧化鋁膜及奈米線製作技術」,全華圖書股份有限公司,台北縣,2008。
[27] 馬遠榮,「低微奈米材料」,科學發展,382 期,73-75 頁,2004。
[28] R. Eason, ”Pulsed laser deposition of thin films”, John Wiley & Sons, Inc., pp. 177-178, 2007.
[29] 許雅萍,以旋轉塗佈法製備氧化鐵與摻雜白金氧化鐵光電極應用於太陽能產氫系統之研究,國立中央大學材料科學與工程研究所碩士論文,2009。
[30] R. Brahimi, B. Bellal, Y. Bessekhouad, A. Bouguelia and M. Trari,”Physical properties of CuAlO2 single crystal”, Journal of Crystal Growth,Vol. 310, pp. 4325-4329, 2008.
[31] J. Akikusa and S. U. M. Khan, ”Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell”, International Journal of Hydrogen
Energy, Vol. 22, pp. 875-882, 1997.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2015-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明