博碩士論文 101328021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.15.147.215
姓名 湯俊彥(Jyun-Yan Tang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 二氧化銥/氧化還原石墨烯複合觸媒之水電解效能研究
(Study on IrO2/RGO hybrid as an oxygen evolution electrocatalysts in the performance of water electrolysis)
相關論文
★ 金屬粉末射出成型毛細吸附脫脂模擬★ 燃料電池複合式流道設計與膜電極組製程
★ 氣態鋅與水蒸氣混合之流場與反應爐參數分析★ 利用化學水浴沉積法製作Ni-ZnO光電極之研究
★ 電解水產氫之電解液流場效應分析★ 以化學水浴法製備AgInS2可見光光電極及其摻雜銅之研究
★ 高溫高壓之電解水產氫效率分析★ 超音波場下電解水產氫之效應分析
★ 以化學水浴法製備氧化鋅光電極薄膜之研究★ 以化學浴沉積法製備四元化合物光電極薄膜之研究
★ 利用化學水浴法鍍製二氧化鈦光電極薄膜之研究★ 以化學浴沉積法製備Cu-In-S化合物光電極薄膜之研究
★ 以化學浴沉積法製備β-In2S3化合物光電極薄膜之研究★ 以化學浴沉積法製備不同結構氧化鋅光電極薄膜之研究
★ 電解水產氫中極化作用之分析與研究★ 磁場對水電解產氫效率增益之機制研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氫氣是乾淨且對環境友善的燃料,已被視為最具潛力的能源來源之一,在許多產氫方法中,其中又以結合再生能源的水電解是最具前景,且最簡單獲得高純度產氫的方法。
本研究利用中溫水熱法合成IrO¬2/RGO觸媒,並使用XRD、TEM、EDS和Raman來進行觸媒材料特性分析,由XRD分析可知,所製作之複合觸媒確實存在個別晶相結構;而由TEM圖可知,可看見IrO¬2粒子均勻地分佈在石墨烯表面上;由EDS分析可知,複合觸媒確實含有Ir、C、O等元素;最後由拉曼圖D/G強度比值變大可知石墨烯氧化物確實還原成石墨烯。
觸媒合成製備完成後,藉由改變觸媒塗佈量、旋轉塗佈轉速、工作電極旋轉等參數,探討觸媒效能與LSV電化學量測、EIS等效電路模擬和氧氣泡生成行為觀察等之間的關聯性。
實驗結果顯示,電解性能在塗佈量70μL時有最好OER表現但電解過程不穩定;在旋轉塗佈轉速250rpm時有最佳薄膜形成且使觸媒均勻塗佈;在工作電極轉速2000rpm時有最小之濃度極化和最佳產氫效率,最後氧氣泡觀測可發現改質後觸媒有較小氣泡大小、較多氣泡數量、較佳氣泡覆蓋率的產生。

摘要(英) Hydrogen is clean and environmentally friendly as a green fuel, and has been regarded as one of the most potential energy resources. Among
the methods of hydrogen production combined with the renewable energy, water electrolysis is the most promising solution, and the simplest method to obtain high-purity hydrogen.
First of all the study, graphene supported IrO2 catalyst (IrO2/RGO) is composite by hydrothermal method. XRD, TEM, EDS and Raman tests are conducted to synthesis catalyst characterization, which reveal that IrO2 nanoparticle is uniformly supported on RGO surface.
Secondly, by changing thin film forming parameters, e.g., catalyst loading, spin coating speed, and rotation of working electrode, attempts and performs to find out the connections between thin film process and electrochemical measurement like LSV, EIS, etc.
Experimental results show that with the more catalyst loading, the better electrolysis performs; and the loading of 70μL gives the best performance in water electrolysis. By increasing the spin coating rate, electrolysis get worse; and the spin coating of 250rpm yields the best performance. As to the rotation of working electrode, 2000rpm gives the best hydrogen production efficiency and the lowest concentration polarization.

關鍵字(中) ★ 二氧化銥
★ 氧化還原石墨烯
★ 水熱反應
關鍵字(英) ★ Iridium dioxide
★ Reduced Graphene Oxide (RGO)
★ Hydrothermal reaction
論文目次 摘要 Ⅰ
Abstract Ⅱ
目錄 Ⅲ
表目錄 Ⅶ
圖目錄 Ⅷ
符號說明 XI
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究目的與動機 5
第二章 理論基礎 7
2-1 電解水產氫之基本原理 8
2-2 電解電壓 9
2-3 電解電壓之測定 10
2-4 法拉第電解定律 11
2-5 極化作用 11
2-5-1 活性極化 11
2-5-2 歐姆極化 12
2-5-3 濃度極化 13
2-6 石墨烯(graphene)介紹 13
2-7 線性掃描伏安法 15
2-8 循環伏安法 15
2-9 電化學交流阻抗頻譜 15
第三章 實驗裝置與步驟 18
3-1 實驗簡述 18      
3-2 實驗參數設定 19
3-3 實驗藥品 19
3-4 實驗儀器 20
3-5 實驗步驟 23
3-5-1 觸媒合成之配製 23
3-5-2 水熱反應過程 23
3-5-3 工作電極之製作(GCE塗佈) 25
3-6 注意事項 25
第四章 結果與討論 27
4-1 材料特性分析 27
4-1-1 X光粉末繞射儀 27
4-1-2 穿透式電子顯微鏡 28
4-1-3 能量散射光譜儀 29
4-1-4 拉曼光譜儀 29
4-2 電化學量測分析 30
4-2-1 觸媒塗佈量影響 30
4-2-2 觸媒旋轉塗佈影響 31
4-2-3 觸媒烘乾溫度影響 32
4-2-4 觸媒塗佈層數影響 33
4-2-5 觸媒工作電極旋轉影響 34
4-2-6 觸媒長時間穩定性測試 35
4-3 氧氣泡生成行為觀察 36
第五章 結論與展望 38
5-1 結論 38
5-2 未來展望 39
參考文獻 40
附錄A 70
Ⅰ 吉布斯自由能 70
Ⅱ 焓電壓理論預測 71
Ⅲ 產氫效率 72
附錄B 73
Ⅰ 電解水之等效電路分析 73
Ⅱ 不同工作電極旋轉轉速下之電化學阻抗頻譜分析 74
參考文獻 [1] 曲新生、陳發林,氫能技術,五南出版社,台北,民國95 年。
[2] 台灣燃料電池資訊網http://www.tfci.org.tw/Fc/fc1-6.asp
[3] W. Kreuter and H. Homann, “Electrolysis: The important energy transformer in a world of sustainable energy,” International Journal of Hydrogen Energy, Vol.23, pp.661-666(1998).
[4] R.F. de Souza, J.C. Padilha, R.S. Gonҫalves, and J.Rault-Berthelot, “Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis,”Electrochemical Communications, Vol.8, pp.211-216(2006).
[5] D.Lj. Stojić, M.P. Marčeta, S.P. Sovilj, and Š.S. Miljanić, “Hydrogen generation from water electrolysis – possibilities of energy saving,” Journal of Power Sources, Vol.118, pp.315-319(2003).
[6] N. Nagai, M. Takeuchi, T. Kimura, and T. Oka, “Existence of optimum space between electrodes on hydrogen production by water electrolysis,”Journal of Power Sources, Vol.118, pp. 315-319(2003).
[7] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umno, and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting,” International Journal of Hydrogen Energy, Vol.26, pp.653-659(2001).
[8] S.K. Mazloomi and Nasri Sulaiman, “Influencing factors of water electrolysis electrical efficiency,”International Journal of Renewable and Sustainable Energy Reviews, Vol.16, pp.4257-4263(2012).
[9] R. Solmaz, “Electrochemical preparation and characterization of C/Ni-NiIr composite electrodes as novel cathode material for alkaline water electrolysis,”International Journal of Hydrogen Energy, Vol.38, pp.2251-2256(2013).
[10] S. Song, H. Zhang, X. Ma, Z. Shao, R.T. Baker and B. Yi, “Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers,”International Journal of Hydrogen Energy, Vol.33, pp.4955-4961(2008).
[11] A.T. Marshall, S. Sunde, M. Tsypkin, and R. Tunold, “Performance of a PEM water electrolysis cell using IrxRu¬yTa¬zO2 electrocatalysts for the oxygen evolution electrode,” International Journal of Hydrogen Energy, Vol.32, pp.2320-2324(2007).
[12] S. Seetharaman, R. Balaji, K. Ramya, K.S. Dhathathreyan, and M. Velan, “Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers,” International Journal of Hydrogen Energy, Vol.38, pp.14934-14942(2013).
[13] F.D. Kong, S. Zhang, G.P. Yin, J. Liu, and Z.Q. Xu, “IrO2-graphene hybrid as an active oxygen evolution catalyst for water electrolysis,” International Journal of Hydrogen Energy, Vol.38, pp.9217-9222(2013).
[14] S.A. Grigoriev, P. Millet, S.V. Korobtsev, V.I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet and V.N. Fateev, “Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis,” International Journal of Hydrogen Energy, Vol.35, pp.5986-5991(2009).
[15] H. Zhang, G. Lin and J. Chen, “Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production,” International Journal of Hydrogen Energy, Vol.35, pp.10851-10858(2010).
[16] J.A. Koza, S.Mühlenhoff, P.Żabiński, P.A. Nikrityuk, K.Eckert, M.Uhlemann, A.Gebert, T.Weier, L.Schultz, and S.Odenbach, “Hydrogen evolution under the influence of the magnetic field,” Electrochimica Acta, Vol.56, pp.2665-2675(2011).
[17] M.Y. Lin and L.W. Hourng, “Effects of magnetic field and pluse potential on hydrogen production via water electrolysis,” International Journal of Energy Research , Vol.38, pp.106-116(2014).
[18] K. Mazloomi, N. B. Sulaiman and H. Moayedi, “Electrical efficiency of electrolytic hydrogen production,”International Journal of Electrochemical Science, Vol.7, pp.3314-3326(2012).
[19] 田中正三郎著;賴耿陽譯著,應用新科技-應用電化學,復漢出版社有限公司,台南(1998)。
[20] K.W. Putz, O.C. Compton, M.J. Palmeri, and S.T. Nguyen, “High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly,”Advanced Functional Materials, Vol.20, pp.3322-3329(2010).
[21] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, “Electric field effect in atomically thin Carbon films,” Science , Vol.306, pp.666-669 (2004).
[22] C. Berger, Z.M. Song, X.B. Li, X.S. Wu, N. Brown, D. Mayou, T.B. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science, Vol.312, pp.1191-1196(2006).
[23] X.S. Li, W.W. Cai, J. An, S.Y. Kim, J.Y. Nah, D.G. Yang, R. Piner, A. Velamakanni, I.W. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, Vol.324, pp.1312-1314 (2009).
[24] D. Wang, Y. Li, P. Hasin, and Y. Wu, “Preparation, characterization, and electrocatalytic performance of graphene-methylene blue thin films,” Nano Research, Vol.4, pp.124-130(2011).
[25] 蘇清源,石墨烯氧化物之特性與應用前景,中研院應用科學研究中心(2011)。
[26] 王怡軫,石墨烯/聚乙烯醇奈米複材之製程與機械性質分析,逢甲大學材料與製造工程研究所碩士論文(2012)。
[27] 田福助,電化學基本原理與應用,五周出版社(2004)。
[28] J.R. Macdonald and W.R. Kenan, Impedance spectroscopy- emphasizing solid materials and systems, Wiley, New York(1987).
[29] 彭雪芬,利用水熱和離子熔液法合成鑭系金屬草酸化合物,中央大學化學研究所碩士論文(2008)。
[30] A. Rabenau, “The role of hydrothermal synthesis in reparative chemistry,”Angew. Chem. Int. Ed. Engl., Vol.24, pp.1026-1040(1985).
[31] P.W. Atkins, Physical Chemistry, 5th ed, New York(1994).
[32] Z.Z. Jing, Z.B. Wang, D.M. Gu, and E.S. Smotkin, “Carbon riveted Pt/C catalyst with high stability prepared by in situ carbonized glucose,”Chemical Communications, Vol.46, pp.6998-7000(2010).
[33] 黃心華,電解水產氫中極化作用之分析與探討,中央大學能源工程研究所碩士論文(2013)。
[34] R.L. LeRoy, and C.T. Bowen, “The Thermodynamics of Aqueous Water Electrolysis,”Journal of The Electrochemical Society, Vol.127, pp.1954-1962(1980).
指導教授 洪勵吾 審核日期 2015-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明