博碩士論文 101328602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.227.254.12
姓名 阮氏懷秋(Nguyen Thi Hoai Thu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 摻雜砷柴氏法生長單晶矽之雜質傳輸數值分析
(Numerical Study of Impurity Transport during Czochralski Arsenic-doped Silicon Crystal Growth)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 柴氏長晶法是現今用以生長大尺寸矽單晶的一個主要方法。為了提高晶體的品量,則需要有效的控制晶錠之氧濃度以及其電性。矽晶圓片最佳電阻率可以透過於晶棒生長過程中,加入一些常見的摻雜劑(硼,砷,磷,銻,...)於矽熔湯中來達成。
在本研究中,有限體積法(FVM)數值模擬方法,用於研究砷的摻雜對固液界面氧氣濃度的影響使用進行了。本研究的實驗數據由SAS公司提供,而在砷濃度中電阻率的轉換是透過轉換公式來計算,並將實驗數據與模擬結果進行比較。將模擬結果與實驗數值相比較後,很顯然,兩者於晶棒的電阻率之變化趨勢是一致。
矽熔湯重摻砷之氧濃度含量比非摻雜的情況下熔湯中的氧濃度明顯偏低,主要原因是由於砷的摻雜會降低二氧化矽中氧的活度係數,進而降低氧的熔解。由於砷的偏析係數較小,所以砷的濃度隨生長晶體高度增加而增加。砷部分會集中在晶錠的中間,而相較於晶體邊緣則較少。
此外,若增加於熔湯中砷的含量,將降低在晶體中之氧含量,但增加徑向砷之含量。砷摻雜量與電阻率之間是成反比關係。
最後,提拉速度和旋轉率對於電阻率之影響亦被考慮。在結果中顯示出晶錠中電阻率,隨生長速率及坩堝的旋轉速度增加而增加,但隨晶k體的旋轉速率增加而降低。
摘要(英) Nowadays the Czochralski (Cz) technique has become a main method to grow large single silicon crystal. In order to enhance the quality of crystal, the level of oxygen concentration in the ingot as well as its electric properties has to be controlled. The optimal resistivity for the silicon epitaxial wafers can be obtained by adding directly some common dopants (boron, arsenic, phosphorus, antimony …) into the liquid silicon during the growth process.
In this study, the effect of doping arsenic on the oxygen concentration along the freezing interface is numerically investigated by finite volume method (FVM). In order to compare with the experimental resistivity provided by SAS Company, the conversion of crystal resistivity from arsenic concentration is made by using the standard transformation formulation. It is clear that the simulation predictions have similar tendency with the experimental ones in crystal resistivity.
The computational results show the mechanism of oxygen content reduction in heavily arsenic-doped Cz silicon melt as compared with non-doped melt. This is because arsenic doping decreases the thermodynamic activity coefficient of oxygen dissolved into the bulk melt from silica. Arsenic content also increases along the length of crystal due to its small segregation coefficient (k0=0.3). The arsenic atoms concentrated in the ingot center are much more than their concentration in the region of crystal edge.
Furthermore, the increase in doping level causes a decrease of oxygen content in the growth direction while this increases the radial segregation of arsenic. There is an inverse relationship between dopant concentration and crystal resistivity.
Last but not least, the effect of pulling rate and rotation rate on the resistivity is also predicted numerically. The results indicate that the radial resistivity variation of ingot increases with increasing the growth rate as well as crucible rotation rate while this trend is reversed as the crystal rotation rate is accelerated.
關鍵字(中) ★ 砷摻雜於矽熔湯
★ 摻雜技術
★ 矽晶體
關鍵字(英) ★ Arsenic doped-silicon melt
★ Doping technique
★ Silicon crystal
論文目次 摘要 i
Abstract ii
Acknowledgements iv
Table of Contents v
List of Figures vii
List of Tables x
Nomenclature xi
English Symbols xi
Chapter 1. Introduction 1
1.1. Fundamental of Czochralski silicon crystal growth 1
1.2. Doping technique 3
1.3. Thermodynamic properties of arsenic 4
1.4. Motivation 5
1.5. Objectives 7
Chapter 2. Theoretical Formulations 14
and Computational Methods 14
2.1. Physical Model 14
2.2. Theoretical Formulations 15
2.2.1. Governing Equations 15
2.2.2. Turbulence flow 15
2.2.3. Thermal boundary conditions 17
2.2.4. Boundary conditions for the flow 17
2.2.5. Boundary conditions of oxygen concentration 18
2.2.6. Boundary conditions of arsenic concentration 21
2.2.7. Physical Significance of the dimensionless numbers 25
2.3. Computational Methods 27
2.3.1. Numerical Methods 27
2.3.2. Grid and tolerance test 27
Chapter 3. Results and Discussions 39
3.1. Comparison of the numerical simulation results of MT1 and MT2 40
3.1.1. Comparison of the numerical simulation results 40
3.1.2. Effect of doping arsenic on the thermodynamic activity coefficient of oxygen 41
3.2. Distribution of oxygen concentration in the bulk silicon melt 43
3.3. Distribution of arsenic concentration and variation of crystal resistivity 45
3.4. Distribution of silicon monoxide concentration and velocity of argon flow in the gas region 47
3.5. Effect of different arsenic doping levels on oxygen concentration 48
3.6. Effect of growth rate and crystal rotation rate on the segregation of dopant into the ingot 49
3.6.1. Effect of the growth rate 49
3.6.2. Effect of the crystal and crucible rotation rate 50
Chapter 4. Conclusions and Future works 70
4.1. Conclusions 70
4.2. Future works 71
References 72
參考文獻 [1]. O. Anttila, “Czochralski growth of silicon crystals”, Silfex Incorporated-A division of Lam Research Corporation, Eaton, OH, USA.
[2]. Brian R.Pamplin, “Crystal growth (Second Edition)”, International Series in the Science of the Solid State, Vo.16, Chapter 1, 1980.
[3]. J.Friedrich, L.Stockmeier, and G. Muller, “Constitutional supercooling in Czochralski growth of heavily doped silicon crystals”, Acta Physica Polonica A, Polish Academy Sciences Institute of Physics, Vo.124, No.2, 2013.
[4]. O. Anttila, O. Fellow and O.Oyji, “Manufacture of High Resistivity, Low Oxygen Czochralski Silicon”, Okmetic Company, 2005
[5]. W. Zulehner and D. Hurber, “Czochralski-grown silicon”, Crystal 8, West Germany, 1982. Chap2.
[6]. W. C. O’Mara, R. B. Herring and L. P. Hunt, “Handbook of semiconductor silicon technology”, Noyes Publications.
[7]. J. Safarian and M. Tangstad, “Vacuum refining of molten silicon”, Metallurgical and Materials Transactions B, Vo.43B, pg.1427, December 2012.
[8]. Standard practice for conversion between resistivity and dopant density for boron-doped, phosphorus-doped, and arsenic-doped silicon, ASTM Committee F1 on Electronics.
[9]. H. Kodera, “Diffusion coefficients of impurities in silicon melt”, Japanese Journal of Applied Physics, Vo.02, No.04, April 1962.
[10]. Z. Liu and T. Carberg, “The influence of dopants on the reaction between liquid silicon and silica”, J. Electrochemical Society, Vo.139, No.3, 1992.
[11]. H. Tu, Q. Zhou, G. Zhang, X. Dai, Z. Wu, and T. Jia, “Growth technologies for 300mm arsenic heavily doped silicon crystals”, J. Electrochemical Society, Vo. 2, pg.89-94, 2006.
[12]. T. Taishi, Y.Ohno and I. Yonenaga, “Constitutional supercooling in heavily As-doped Czochralki Si crystal growth”, J. Crystal Growth, 2013 (In press, Corrected Proof).
[13]. Banan, Mohsen, Kulkarni, Milind, Witmer, Charles, II, “Multi-stage arsenic doping process to achieve low resistivity in silicon crystal grown by Czochralski method”, Search International and National Patent Collections, 2011.
[14]. J. C. Chen, Y. Y. Teng, W. T. Wun, C. W. Lu, H. I. Chen, C. Y. Chen, and W. C. Lan, “Numerical simulation of oxygen transport during the Cz silicon crystal growth process”, J. Crystal Growth, Vo.318, pg.318-323, 2011.
[15]. A.D. Smirnov and V.V. Kalaev, “Development of oxygen transport model in Czochralski growth of silicon crystals”, J. Crystal Growth, Vo.310, pg.2970, 2008.
[16]. H. Matsuo, R. B. Ganesh, S. Nakano, L. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, and K. Kakimoto, “Thermal dynamical analysis of oxygen incorporation from a quartz crucible during solidification of multi-crystalline silicon for solar cell”, J. Crystal Growth, Vo.310, pg.4666, 2008.
[17]. Y. Y. Teng, J. C. Chen, C. W. Lu, C. C. Huang, W.T.Wun, H. I. Chen, C. Y. Chen, and W.C.Lan, “Numerical Simulation of the effect of heater position on the oxygen concentration in the Cz silicon crystal growth process”, International Journal of Photoenergy, Vo.2012, Article ID 395235
[18]. K. Abe, K. Terashima, T. Matsumoto, S. Maeda, H. Nakanishi, “Fused quartz dissolution rate in silicon melts: influence of boron addition”, J. Crystal Growth, Vo.186, pg.557-564, 1998.
[19]. CGSim Flow Module Theory Manual.
[20]. Z. Liu and T. Carlberg, “On the mechanism of oxygen content reduction by antimony doping of Czochralski silicon melts”, J. Electrochemical Society, Vo.138, No.5, 1991.
[21]. S. Otsuka, Z. Kozuka, “ Themodynamic study of oxygen in liquid elements of group Ib to VIb”, Transactions of the Japan Institute of Metals, Vo.22, No.8, pg.558-566, 1981.
[22]. Z. Liu and T. Carlberg, “A model for dopant concentration in Czochralski silicon melts”, J. Electrochemical Society, Vo.40, No.7, 1992.
[23]. O.V. Smirnova, V.V. Kalaev, A. Seidl, and B. Birkmann, “3D unsteady analysis of melt flow and segregation during EFG Si crystal growth”, J. Crystal Growth, Vo.310, pg.2209-2214, 2008.
[24]. A. Allaire and R. Harris, “Vacuum distillation of copper matte to remove lead, arsenic, bismuth, and antimony”, Metallurgical Transactions B, Vo.20B, pg.793, 1989.
[25]. N. Machida, Y. Suzuki, K. Abe, N. Ono, M. Kida, Y. Shimizu, “The effects of argon gas flow rate and furnace pressure on oxygen concentration in Czochralski-grown silicon crystals”, J. Crystal Growth, Vo.186, pg.362-368, 1988.
[26] 鄧應揚,「多晶矽太陽能電池晶碇固化生長之熱流場研究」,國立中央大學,博士班資格考計畫書,民國97年。
[27]. O.A. Noghabi, M. M’Hamdi, M. Jomâa, “Effect of crystal and crucible rotations on the interface shape of Czochralski grown silicon single crystals”, J. Crystal Growth, Vo.318, pg.173-177, 2011.
[28]. X. Geng, X.B. Wu, Z.Y. Guo, “Numerical simulation of combined flow in Czochraski crystal growth”, J. Crystal Growth, Vo.179, pg.309-319, 1997.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2014-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明