博碩士論文 101329001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:1 、訪客IP:34.204.191.31
姓名 楊峻豪(Jyun-hao Yang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用新穎方法製作鋁背表面電場應用於結晶矽太陽能電池
(A novel fabrication of Al back surface fields for crystalline silicon solar cells)
相關論文
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
★ 旋轉塗佈摻雜溶液之擴散製程探討及其應用 於製備太陽能電池★ 週期性銀奈米粒子陣列於折射率感測之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本項研究中,為了降低製作局部背表面電場成本,我們提出以簡單新穎的製程方式製作局部背表面電場運用在結晶矽太陽能電池中。背表面鈍化層是使用SiOxNy和SiNx雙層堆疊結構,利用高分子薄膜製作出微米孔洞圖形遮罩,並製備局部背表面鈍化層,運用於電池中,製備出隨機局部鋁背表面電場 (Random local Al back surface field)太陽能電池,探討其不同背表面接觸面積之少數載子生命週期變化和太陽能電池光電轉換特性。
本研究將針對不同孔洞接觸面積變化探討對於電池效率之影響,且電極接觸形狀與鋁背表面電場厚度有強烈的關係,後續並探討剝除局部介電層和接觸面積之關係。本實驗顯示,局部背表面電場能有效的改善載子生命週期,當孔洞接觸面積愈多時,表面鈍化層移除則愈多,有效少數載子生命週期則愈低,當孔洞接觸面積達到百分之四十以上,其有效載子生命週期與整面表面電場幾乎相同。其電池背表面孔洞接觸面積為7.3 %時有最佳光電轉換效率之表現,電池面積為10 mm × 10 mm,製備於p-type單晶矽基板轉換效率可達到13.43 %,比較背面未鈍化,整面背表面電場參考樣品中轉換效率為12.81 %,可看出其光電轉換效率有顯卓的提升。
本研究中,在最佳化隨機鋁局部背表面電場比較整面背表面電場,可觀察出明顯的改善Voc和Jsc,分別提升6.8 mV和2.22 mA,此提升是因為良好背表面內反射和背表面鈍化產生之結果。
摘要(英) In this work, in order to reduction cost of local back surface field, we propose a simple and novel process was developed for fabrication of local Al back surface field (BSF) for crystalline Si solar cells. Where a stack of SixONy and SiNx is used as rear surface passivation layer containing holes. Random local Al BSF solar cells with microhole patterned dielectric layers as rear surface passivation have been prepared. A detailed investigation of the effect of local holes contact area on the conversion efficiency of the PERC cells was performed.
The effect of rear contact formation on cell efficiency was studied as a function of contact area, hence the metallization fraction. Contact shape and the thickness of Al-BSF layer were found to be heavily dependent on the etch ablation pattern and contact area. When the holes area fraction was higher, the fraction of the passivation film removed was higher and as a consequence, the effective lifetime was smaller. It is shown that the rear surface passivation could effectively increase the lifetime and the cell with around 7.3 % hole area fraction can have best performance. Conversion efficiency of 13.43% was achieved using 10×10 mm, p-type single crystalline silicon wafers. This is a significant improvement when compared to unpassivated, full area aluminum back surface field solar cells, which exhibit only 12.81 % conversion efficiency on the same wafer type.
There is an apparent gain in Jsc and Voc of, respectively, 2.22 mA/cm2 and 6.8 mV for the best random Al BSF cells compared to full Al BSF reference cells, because of better rear internal reflection and rear surface passivation.
關鍵字(中) ★ 矽
★ 鈍化射極背表面接觸
★ 隨機鋁背表面電場
★ 表面鈍化
關鍵字(英) ★ Si
★ PERC
★ Random Al BSF
★ Surface passivation
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究背景與動機 2
第二章 文獻回顧 3
2-1矽晶太陽電池基本理論 3
2-1-1太陽能光譜 4
2-1-2太陽能電池重要參數 5
2-2太陽能電池鋁背表面電場之發展 12
2-3太陽能電池的複合 15
2-4背表面電場理論 17
2-4-1高低階面 (High-low junction) 17
2-4-2鋁除雜 (Al gettering)的特性 19
2-4-3鋁-矽接觸形成基本機制 19
2-5高分子薄膜孔洞形成基本機制 22
第三章 實驗步驟 25
3-1薄膜製備 25
3-2製備高分子薄膜 26
3-3製備隨機分佈鋁表面電場 28
3-4隨機分佈鋁背表面電場太陽能電池製作流程 29
3-4-1實驗步驟流程 31
3-5儀器分析 31
3-5-1橢圓儀 (Ellipsomepter) 31
3-5-2有效少數載子生命週期量測儀器 32
3-5-3量子轉換效率 (Quantum efficiency, QE) 32
3-5-4太陽模擬光量測系統 (Solar simulator) 32
第四章 結果與討論 33
4-1高分子薄膜製備不同孔洞面積表面形貌之觀察 33
4-2不同介電層薄膜對於鋁金屬退火後之特性分析 38
4-2-1 單層介電層與鋁金屬退火後之少數載子生命週期量測 38
4-2-2雙層介電層與鋁金屬退火後之少數載子生命週期量測 40
4-3剝除局部介電層與局部背表面電場之特性分析 41
4-3-1剝除局介電層之少數載子生命週期 41
4-3-2局部背表面電場之少數載子生命週期 41
4-4不同孔洞面積分佈局部背表面電場太陽能電池之性能比較 43
第五章 結論 49
參考文獻 50
參考文獻 [1] Muramatsu, S., et al., Effect of hydrogen radical annealing on SiN passive solar cells. Solar Energy Materials and Solar Cells. 65, p. 599-606, 2001.
[2] Lee, Y., et al., Stability of SiNX /SiNX double stack antireflection coating for single crystalline silicon solar cells. Nanoscale Research Letters, 7, p.1-6. 2012.
[3] Dauwe, S., et al., Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Progress in photovoltaics, 10, p. 271-278, 2002.
[4] Salemi, S., et al., The effect of defects and their passivation on the density of states of the 4H-silicon-carbide/silicon-dioxide interface. Journal of Applied Physics, 2013.
[5] Chang, L.S., P.L. Gendler, and J.H. Jou, Thermal, mechanical and chemical effects in the degradation of the plasma-deposited alpha-rich passivation layer in a multilayer thin-film device. Journal of Materials Science, 26, p. 1882- 1890,1999.
[6] Jang, J.H. and K.S. Lim, Post hydrogen treatment effects of boron-doped a-SiC:H p-layer of a-Si:H solar cell using a mercury-sensitized photo-chemical vapor deposition method. Japanese journal of applied physics part 1-regular papers short notes & review papers, 36, p. 6230-6236, 1997.
[7] Sepeai S., et al., Surface passivation studies on n+pp+ bifacial solar cell. International Journal of Photoenergy,10, p. 1155- 1162, 2012.
[8] J Del Alamo, J Van Meerbergen, F d′Hoore, J Nijs, High-low junctions for solar cell applications. Solid-State Electronics, 24, p. 533-538, 1980.
[9] Michael P. Godlewski, Cosmo R. Baraona, Henry W, Low-high junction theory applied to solar cells, 10th Photovoltaic Specialists′ Conf, IEEE, 29, p. 131-150, 1990.
[10] Aberle AG, Altermatt PP, Heiser G, Robinson SJ, Wang A, Zhao J, Krumbein U, Green MA. Limiting loss mechanisms in 23% efficient silicon solar cells. Journal of Applied Physics , 77, p. 3491-3507,1995.
[11] B. Vermang, H. Goverde, A. Uruena, A. Lorenz, E. Cornagliotti, A. Rothschild, J. John, J. Poortmans, and R. Mertens, Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si Solar Cells, Solar Energy Materials and Solar Cells,101, p. 204-209, 2012.
[12] Sheppard, P.A., Handbook of Geophysics. Geophysical journal of the royal astronomical Society, p. 476-478.1960.
[13] S. O. Kasap, Optoelectronics and Photonics Principles and Practices Prentice -Hall, ed. 1.0, 2001.
[14] D. A. Neamen, Semiconductor Physics and devices: basic principles, mcGraw-hill, 2003.
[15] H. Hoppe , N. S. Sariciftci, Organic solar cells, journal of materials research 19, 1924- 1945, 2004.
[16] B. Fischer, Loss analysis of crystalline silicon solar cells using photo- conductance and quantum efficiency measurements, Ph.D Thesis, University of Konstanz , 2003.
[17] Schimpe, R., Theory of reflection at the facet of a semiconductor-laser. Aeu-Archiv Fur elektronik und ubertragungstechnik- International Journal of Electronics and Communications, 46, p. 80-85, 1992.
[18] P. A. Basore, Extended Spectral Analysis of Internal Quantum Efficiency, Proceedings 23rd IEEE PVSC, p.147- 152, 1993.
[19] A. Rohatgi, Z. Chen, P. Doshi, T. Pham, and D. Ruby, High-efficiency silicon solar cells by rapid thermal processing, Appl. Phys. Lett. 65, 2087 (1994).
[20] G. Santana, A. Morales-Acevedo, and L. Hernandez, Gettering effects by aluminum upon the dark and illuminated I-V characteristics of N+-P-P+ silicon solar cells, Sol. Energy mater. sol. Cells, 62, p. 1299-1302 , 2000.
[21] Park S, Bae S, Kim H, Kim S, Do Kim Y, Park H, Kim S, Tark SJ, Son CS, Kim D, Effects of controllable process factors on Al rear surface bumps in Si solar cells, Current Applied Physics,12, p. 17-22, 2012.
[22] J. Krause, R. Woehl, M. Rauer, C. Schmiga, J. Wilde, and D. Biro, Microstructural and electrical properties of different-sized aluminum-alloyed contacts and their layer system on silicon surfaces," Solar Energy Materials and Solar Cells, 95, p. 2151-2160, 2011.
[23] Meemongkolkiat V, Nakayashiki K, KIM D S, et al. Factors limiting the formation of uniform and thick aluminum–back-surface field and its potential. Journal of the Electro- Chemical Society, 153, p. 53-58, 2006.
[24] Zhao J, Wang A, Green MA, High efficiency PERL silicon solar cells on FZ and M CZ substrates Technical digest of the 11th International Photovoltaic Science and Engineering Conference, 65, p. 429- 435, 2001.
[25] Wang A, Zhao J, Green MA, 24% efficient silicon solar cells, Applied physics letters; 2, p. 1477- 1480, 1994.
[26] Blakers AW, Wang A, Milne AM, Zhao J, Green MA. High efficient silicon solar cells. Applied Physics Letters,6 , p. 427-484, 1990.
[27] E. Urrejola, K. Peter, H. Plagwitz, and G. Schubert, Silicon diffusion in aluminum for rear passivated solar cells, Journal of Applied Physics, 98, p. 673- 683, 2011.
[28] H. Plagwitz, , R. Brendel, Analytical model for the diode saturation current of point-contact solar cells, Prog. Photovolt, 14, p.1–12, 2006.
[29] S.M. Yang , J. Plá, Optimization of the back contact in c-Si solar cells, Solid-State Electronics, 53, p. 925–930, 2009.
[30] H. Plagwitz, M. Schaper, J. Schmidt, B. Terheiden, R. Brendel. Analytical model for the optimization of locally contacted solar cells, Photovoltaic Specialists Conference, 31, p.679- 683, 2005.
[31] K. Wijekoon, F. Yan, Y. Zheng, D. Wang, H. Mungekar, L. Zhang, H. Ponnekanti, Optimization of rear local contacts on high efficiency PERC solar cells structures, International Journal of Photo Energy, 2013.
[32] D. Niinobe , H. Morikawa, S. Hiza, T. Sato, S. Matsuno, H. Fujioka, T. Katsura, T. Okamoto, S. Hamamoto, T. Ishihara, S. Arimoto, Large-size multi-crystalline silicon solar cells with honeycomb textured surface and point-contacted rear to ward industrial production, Solar energy materials and solar Cells, 95, p. 49-52, 2011.
[33] J. Müller, K. Bothe, S. Gatz, F. Haase, C. Mader, and R. Brendel, Recombination at laser-processed local base contacts by dynamic infrared lifetime mapping, Journal of Applied Physics, 108,p. 1- 6, 2010
[34] S. Gatz, K. Bothe, J. Müller, T. Dullweber, R. Brendel, Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells, Energy procedia, 8, p. 318-323, 2011.
[35] M. Moors, K. Baert, T. Caremans, F. Duerinckx, A. Cacciato, J. Szlufcik, Industrial PERL-type solar cells exceeding 19% with screen-printed contacts and homogeneous emitter, Solar energy materials and solar cells, 106, p. 84–88, 2012.
[36] N. Balaji, C. Park, Y. Lee, S. Jung, J. Yi, Rear-side passivation characteristics of Si-rich SiNx for various Local Back Contact solar cells, Vacuum , 96 , p. 69 -72, 2013.
[37] M. wolf, H. Rauschenbach, advanced energy conversion, 3, p. 455-479, 1963.
[38] A. B. Sproul, M. A. Green, and A. W. Stephens, Accurate determination of minority carrier- and lattice scattering-mobility in silicon from photo-conductance decay, J. Appl. Phys 72, p. 4161-4171, 1992.
[39] A. G. Aberle, Crystalline silicon solar cells: advanced surface passivation and analysis, University of New South Wales, Sydney NSW 2052, 1999.
[40] J. P. Colinge and C. A. Colinge, Physics of semiconductor devices, Kluwer academic publishers, 2002.
[41] S. M. Sze, and K. K. Ng, Physics of semiconductor devices, John Wiley & Sons, Inc., Hoboken, NJ, USA. 2006.
[42] M. A. Green, Solar cells: Operating principles, technology, and system applications, Englewood Cliffs, NJ, Prentice-hall, Inc. 1982.
[43] M. S. Tyagi and R. V. Overstraeten, Minority carrier recombination in heavily doped silicon, Solid-St.Electron. 26, p.577- 597 , 1983.
[44] M. J. Kerr and A. Cuevas, General parameterization of Auger recombination in crystalline silicon, J. Appl. Phys. 91,p. 97-104 , 2002.
[45] W. Shockley and W. Read, Statistics of the Recombination of holes and electrons, Phys. Rev. 87, p.835- 842 , 1952.
[46] R. Hall, Electron-Hole Recombination in Germanium, Phys. Rev. 87, p. 387-387, 1952.
[47] M. A. Green, High Efficiency Silicon Solar Cells, Trans tech publications , p. 427-484, 1990.
[48] A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons Inc, 2003.
[49] A. R. Beattie and P. T. Landsberg, Auger effect in Semiconductors, Proc. R. Soc. 249, p. 16- 20, 1959.
[50] J. Dziewior and W. Schmid, Auger coefficients for highly doped and highly excited silicon, Appl. Phys. Lett. 31, p. 346-348, 1977.
[51] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M.C.M. van de Sanden, and W.M.M. Kessels, Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3, Prog. Photovolt. 16, p. 461- 466, 2008.
[52] S. Gatz, K. Bothe, J. Müller, T. Dullweber, R. Brendel, Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells, Energy Procedia,8, p. 318- 323, 2011.
[53] J. Mandelkorn, J. H. Lamneck, Jr., Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells, in Proc. 9th IEEE Photovoltaic Spec. Conf., IEEE, New York, 66,1972.
[54] M. Wolf, Drift fields in photovoltaic solar energy converter cells, in Proc. Of the IEEE 51, 674-693, 1963.
[55] P. L. Lölgen, Surface and volume recombination in silicon solar cells, PhD Thesis, Universiteit Utrecht,1995.
[56] J. del Alamo, J. Eguren, and A. Luque, Operating limits of Al-alloyed high-low junctions for BSF solar cells, Solid-St. Electron. 24, p.415- 420,1981.
[57] J. Mandelkorn and J. H. Lamneck Jr., A new electric field effect in silicon solar cells, J. Appl. Phys. 44, p. 4785-4790, 1973.
[58] J. Mandelkorn, J. H. Lamneck, Jr., Advances in the theory and application of BSF cells, in Proc. of 11th Photovoltaic Specialists Conference,5, p.6- 8, 1975.
[59] H.B. Xu, R.J. Hong, B. Ai, L. Zhuang, H. Shen , Application of phosphorus diffusion gettering process on upgraded metallurgical grade Si wafers and solar cells, Applied Energy 87, p. 3425– 3430, 2010.
[60] SM Joshi, UM Gösele, TY Tan, Improvement of minority carrier diffusion length in Si by Al gettering, J. Appl. Phys. 77 ,p. 3853-3863, 1995.
[61] J.L. Murray,A. J. McAllster, The Al–Si(Aluminum–silicon)system, Bull. Alloy Phase Diagrams,1, p. 74–84, 1984.
[62] J. Delalamo, J. Eguren, A. Luque, Operating Limits of al-alloyed high-low junctions for bsf solar cells. Solid-State Electrics, 24. pp. 415- 420, 1981.
[63] F.Huster, Investigation of the alloying process of screen printed aluminum pastes for the BSF formation on silicon solar cells, Proceedings of the 20th European Photovoltaic Solar Energy Conference,, p. 1466–1469, 2005.
[64] F.S. Grasso, L. Gautero, Jochen Rentsch, Ralf Preu, R. Lanzafame. Characterisation of location al-bsf formation for PERC solar cell structure, 25th European photovoltaic Solar Energy Conference, p.371- 374, 2010.
[65] K. D-Veress1, J. R. Dutcher and J. A. Forrest, Dynamics and Pattern Formation in Thin Polymer Films, physics in Canada, 2003.
[66] S. Herminghaus, K. Jacobs, K. R. Mecke, Thin liquid polymer films rupture via defects, Langmuir, Vol. 14, No. 4, 1998.
[67] C. Neto, K. Jacobs, Dynamics of hole growth in dewetting polystyrene films. Physica, 339, p. 66 – 71, 2004.
[68] J. Y. Song, S. Park, Y. D. Kim, M. G. Kang, S. J. Tark, S. Kwon, S. Y, and D. Kim, Aluminum fire-through with different types of the rear passivation layers in crystalline Silicon Solar Cells, Met. Mater. Int, 18, p. 699-703, (2012).
指導教授 陳一塵(I-chen Chen) 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明