博碩士論文 101329002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.233.239.102
姓名 吳哲瑋(Che-Wei Wu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
(The Influence of Iron-particles Addition on Thermal and Mechanical Properties of Mg-based Amorphous Alloy)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究
★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究
★ 鐵基塊狀金屬玻璃熱塑成形性之研究★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究
★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究
★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究
★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製★ 低密度雙相富鋁高熵合金之微結構觀察與其機械性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,生物可降解材料在醫學界備受矚目,原因是其能夠在生物體內自行分解,不需藉由二次手術取出,有效降低術後感染的風險。鎂、鋅、鈣為人體內含量極高之金屬元素,形成非晶質合金後,不但具有良好的生物相容性,同時具有和骨骼相近之楊氏係數,在骨科駐植物的應用上相當具有潛力。然而,鎂鋅鈣非晶質合金在常溫下呈現出嚴重脆性,因此實際應用上仍有困難尚待克服。本實驗首先針對MgxZn95-xCa5 (x = 65-67)合金系統進行最佳玻璃形成能力探討,發現Mg66Zn29Ca5具有相對較佳的玻璃形成能力,接著利用Mg66Zn29Ca5為基材,添加等軸鐵顆粒製作出非晶質合金複材。實驗結果顯示,鐵顆粒具有良好的散佈強化效果,可有效提升其壓縮破裂強度,基材抗壓強度由394 MPa提升至650 MPa,但由於鐵顆粒與基材介面契合度不佳緣故,塑性變形量並無明顯提升。
摘要(英) The biodegradable materials can be dissolved spontaneously in human body, hence the secondary surgery is not required and many infections can be avoided. Therefore, biodegradable materials have attracted great attention in the field of medical research. Magnesium, Zinc and Calcium are elements with high content in human body. The Mg-Zn-Ca amorphous alloy has become a potential candidate of orthopedic implants due to its high bio-compatibility and low Young’s Modulus that is quite close to human bones. However, it still has many restrictions on applications because of its inherit brittleness. The glass forming ability (GFA) of MgxZn95-xCa5 (x = 65-67) alloying system was evaluated in the beginning of this study, and the result reveals that the Mg66Zn29Ca5 has the highest value of GFA in this alloy system. Therefore, the composition of Mg66Zn29Ca5 was utilized as the matrix to fabricate Mg-based BMGC with equiaxial iron particles addition. The result of compression test also shows the dispersion strengthening effect of the iron particles on increasing the fracture strength of the Mg-based BMG. The fracture strength of Mg66Zn29Ca5-based BMGC can be increased from 394 MPa to 650 MPa. However, no obvious improvement of plasticity can be obtained for this Mg-based BMGC due to the bad adhesion between the iron particles and the amorphous matrix.
關鍵字(中) ★ 生物降解
★ 生物相容性
★ 非晶質合金
★ 骨科駐植物
★ 裂紋
關鍵字(英) ★ biodegradable
★ biocompatibility
★ orthopedic implants
★ bulk metallic glass composites (BMGCs)
★ crack
論文目次 中文摘要................................................................................................................I
英文摘要..............................................................................................................II
總目錄.................................................................................................................III
圖目錄................................................................................................................VII
表目錄.................................................................................................................XI
第一章 前言.......................................................................................................1
1-1 緒論..........................................................................................................1
 1-2 研究動機與目的......................................................................................3
第二章 理論基礎...............................................................................................5
2-1 非晶質合金概述......................................................................................5
2-2 非晶質合金的發展歷程..........................................................................6
2-3 實驗歸納法則..........................................................................................9
2-4 非晶質合金製程簡介............................................................................10
2-5 非晶質合金熱力學................................................................................13
2-5-1 非晶質是平衡的介穩態................................................................13
2-5-2 玻璃轉換溫度(Tg)..........................................................................14
2-5-3 簡化玻璃溫度(Trg).........................................................................15
2-5-4 過冷液相區大小(ΔTx)...................................................................16
2-5-5 γ與γm..............................................................................................16
 2-6 非晶質合金之特性................................................................................17
2-6-1 機械性質........................................................................................18
  2-6-2 抗蝕性與抗菌性............................................................................19
2-6-3 磁性質............................................................................................19
 2-7 非晶質合金的變形機制........................................................................20
2-8 外加金屬顆粒選擇法則........................................................................21
第三章 實驗步驟.............................................................................................22
3-1 試片製作................................................................................................22
3-1-1 合金基材與複材配製....................................................................22
  3-1-2 合金基材熔煉................................................................................23
3-1-3 合金複材熔煉................................................................................24
3-1-4 非晶質合金棒材製作....................................................................24
3-1-5 非晶質薄帶製作............................................................................25
3-2 微結構觀察與分析................................................................................26
3-2-1 X光繞射分析(XRD)......................................................................26
3-2-2 掃描式電子顯微鏡(SEM)觀察兼能量散射質譜分析(EDS).......26
 3-3 機械性質分析........................................................................................27
3-3-1 壓縮測試........................................................................................27
3-3-2 硬度及破裂韌性測試....................................................................28
3-4 熱性質分析............................................................................................29
第四章 結果與討論.........................................................................................31
4-1 顯微組織觀察與分析............................................................................31
4-1-1 基材析出相與外加顆粒實際含量計算........................................31
4-1-2 X光繞射分析.................................................................................32
4-1-3 壓縮前試片之SEM觀察與EDS成份分析...................................33
4-1-4 壓縮後試片破斷面之SEM觀察...................................................34
4-2 熱性質分析............................................................................................35
4-2-1 基材非恆溫熱性質分析................................................................35
4-2-2 複材非恆溫熱性質分析................................................................37
4-3 機械性質分析........................................................................................37
4-3-1 壓縮測試結果與分析....................................................................37
4-3-2 硬度與破裂韌性測試結果與分析................................................40
4-3-3 結晶相比例與機械性質之關係....................................................42
第五章 結論...................................................................................................43
參考文獻.............................................................................................................44

圖 2-1 結晶材料與非晶材料X-ray繞射比較圖.............................................49
圖 2-2 雙輪連續急冷法示意圖.......................................................................49
圖 2-3 激冷熔液旋噴法示意圖.......................................................................50
圖 2-4 平面流鑄法示意圖...............................................................................50
圖 2-5 熔融金屬液急冷之比體積對溫度變化曲線.......................................51
圖 2-6 臨界冷卻速率與玻璃形成能力關係圖...............................................51
圖 2-7 結晶與非晶質不鏽鋼材料抵抗腐蝕示意圖.......................................52
圖 2-8 低溫剪切轉變區示意圖.......................................................................52
圖 3-1 實驗流程示意圖...................................................................................53
圖 3-2 實驗原料外觀.......................................................................................53
圖 3-3 高週波熔煉感應爐外觀.......................................................................54
圖 3-4 高週波熔煉感應噴鑄爐外觀...............................................................54
圖 3-5 鎂鋅鈣非晶質合金棒材.......................................................................55
圖 3-6 高週波熔煉感應爐(附銅輪)外觀.........................................................55
圖 3-7 慢速切割機...........................................................................................56
圖 3-8 圓柱型標準試片(h:d = 2:1)..................................................................56
圖 3-9 X光繞射儀外觀....................................................................................57
圖 3-10 超高真空場發射掃描式電子顯微鏡外觀...........................................57
圖 3-11 穿透式電子顯微鏡外觀.......................................................................58
圖 3-12 雙束型聚焦離子束顯微鏡外觀...........................................................58
圖 3-13 萬能材料試驗機外觀...........................................................................59
圖 3-14 維克氏硬度計外觀...............................................................................59
圖 3-15 壓痕裂縫示意圖...................................................................................60
圖 3-16 示差掃描熱分析儀外觀.......................................................................60
圖 4-1 MgxZn95-xCa5 (x = 65.1-67.4)非晶質合金基材XRD繞射圖..............61
圖 4-2 MgxZn95-xCa5 (x = 67.7-69.6)非晶質合金基材XRD繞射圖..............61
圖 4-3 Mg66Zn29Ca5參雜Fe顆粒非晶質合金複材繞射圖............................62
圖 4-4 Mg66Zn29Ca5非晶質合金基材表面形貌..............................................62
圖 4-5 Mg67.7Zn27.3Ca5非晶質合金基材表面形貌及其析出相 (a) 500x (b)
1000x (c) 3000x (d) 5000x..................................................................................64
圖 4-6 Mg66Zn29Ca5 / 10 vol.% Fe非晶質合金複材表面形貌.......................65
圖 4-7 Mg66Zn29Ca5 / 10 vol.% Fe非晶質合金複材表面之鐵粉與介面 (a)
1000x (b) 2000x..................................................................................................66
圖 4-8 Mg66Zn29Ca5非晶質合金基材壓縮後試片情形..................................66
圖 4-9 Mg66Zn29Ca5非晶質合金基材破斷面觀察 (a) 100x (b) 500x (c) 1000x
(d) 3000x.............................................................................................................68
圖 4-10 Mg66Zn29Ca5 / 10 vol.% Fe非晶質合金複材壓縮後試片情形...........69
圖 4-11 Mg66Zn29Ca5 / 10 vol.% Fe非晶質合金複材破斷面觀察 (a) 1000x (b)
3000x (c) 5000x (d) 10000x................................................................................71
圖 4-12 Mg66Zn29Ca5 / 10 vol.% Fe非晶質合金複材壓縮後鐵顆粒與介面情
形 (a) 1000x (b) 3000x (c) 5000x.......................................................................72
圖 4-13 (a) MgxZn95-xCa5 (x = 65.1-67.4)非晶質合金基材之非恆溫DSC曲線圖 (b) 過冷液相區局部放大圖........................................................................73
圖 4-14 (a) MgxZn95-xCa5 (x = 67.7-69.6)非晶質合金基材之非恆溫DSC曲線圖 (b) 過冷液相區局部放大圖........................................................................74
圖 4-15 Mg含量與γm值變化趨勢圖...............................................................75
圖 4-16 Mg含量與ΔTx值變化趨勢圖............................................................75
圖 4-17 Mg66Zn29Ca5 / x vol.% Fe (x = 0, 5, 10)非晶質合金複材之非恆溫DSC曲線圖.................................................................................................................76
圖 4-18 MgxZn95-xCa5 (a) x = 65.1-67.4 (b) x = 67.7-69.6非晶質合金基材之壓縮曲線.................................................................................................................77
圖 4-19 Mg66Zn29Ca5 / x vol.% Fe (x = 0-10) 非晶質合金複材之壓縮曲線...78
圖 4-20 Mg66Zn29Ca5非晶質合金基材硬度測試壓痕形貌 (a) 300x
(b) 500x...............................................................................................................79

圖 4-21 Mg66Zn29Ca5 / 10 vol.% Fe非晶質合金複材硬度測試壓痕形貌
(a) 300x (b) 500x.................................................................................................80
圖 4-22 析出相比例與抗壓強度關係圖...........................................................80
圖 4-23 析出相比例與破裂韌性關係圖...........................................................81
表 2-1 非晶質合金之特性及其應用領域.......................................................82
表 2-2 晶質合金與非晶質合金破壞強度比較...............................................82
表 4-1 MgxZn95-xCa5 (x = 65.1-69.6)基材內部析出相所占體積分率............83
表 4-2 Mg66Zn29Ca5 / x vol.% Fe (x = 5, 10)非晶質合金複材內部鐵粉實際含量.........................................................................................................................83
表 4-3 Mg95-xZnxCa5 (x = 28~30)假設成份與實際成份對照表......................84
表 4-4 Mg66Zn29Ca5 + Fe粉假設成份與實際成份對照表..............................84
表 4-5 MgxZn95-xCa5 (x = 65.1-69.6)基材真實熱性質列表.............................85
表 4-6 Mg66Zn29Ca5 / x vol.% Fe (x = 0, 5, 10)複材真實熱性質列表............85
表 4-7 Mg66Zn29Ca5 / x vol.% Fe (x = 0, 5, 10)非晶質合金複材壓縮性質....86
表 4-8 Mg66Zn29Ca5 / x vol.% Fe (x = 0, 5, 10)非晶質合金複材硬度與破裂韌
性值.....................................................................................................................87
表 4-9 MgxZn95-xCa5 (x = 65.1-69.6)基材之塑性區大小................................88
參考文獻 [1]. I. Vroman and L. Tighzert, “Biodegradable Polymers”, Materials 2009, 2, pp. 307-344.
[2]. F. Witte, “The history of biodegradable magnesium implants: A review”, Acta Biomaterialia 6, 2010, p.1680.
[3]. H. Ma, J. Xu and E. Ma, “Mg-based bulk metallic glass composites with plasticity and high strength”, Appl., vol.83, 2003, p. 2793.
[4]. Y. K. Xu, H. Ma, J. Xu and E. Ma, “Mg-based bulk metallic glass composites with plasticity and gigapascal strength”, Acta Mater., vol.53, 2005, p. 1857.
[5]. H. A. Bruck, T. Chrictman, A. J. Rosakis and W. L. Johnson, “Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys”, Scr. Metall. Mater., vol. 30, 1994, p. 429.
[6]. H. A. Bruck, A. J. Rosakis and W. L. Johnson, “The dynamic compressive behavior of beryllium bearing bulk metallic glasses”, J. Mater. Res., vol. 11, 1996, p. 503
[7]. B. Zberg, P. J. Uggowitzer1 and J. F. Löffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature Materials, 2009, pp. 887-890.
[8]. Q. F. Li, H. R. Weng, and Z. Y. Suo, “Microstructure and mechanical properties of bulk Mg–Zn–Ca amorphous alloys and amorphous matrix composites”, Materials Science and Engineering A 487, 2008, pp. 301-308.
[9]. J.S.C. Jang, W.J. Li, T.H. Li, and S.R. Jian, “Thermoplastic forming ability of a Mg-base bulk metallic glass composites reinforced with porous Mo particles”, Intermetallics, Vol. 18, 2010, pp. 1964-1968.
[10]. J.S.C. Jang , L.J. Chang and J.H. Young, “Synthesis and characterization of the Mg-based amorphous/nano ZrO2 composite alloy”, Intermetallics 14, 2006, pp. 945-950.
[11]. A. Inoue, B. L. Shen, A.R. Yavari and A. L. Greer, “Mechanical Properties of Fe-Based Bulk Glassy Alloys in Fe-B-Si-Nb and Fe-Ga-P-C-B-Si systems”, J. Mater. Res., vol. 18, 2003, p.1487.
[12]. T Egami, “Magnetic amorphous alloys: physics and technological applications”, Rep. Prog. Phys., Vol 47, 1984, pp. 1601-1725.
[13]. J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, J. Appl. Phys., vol. 19, 1934, p. 37.
[14]. Brenner, D. E. Couch, E. K. Williams, J. Res. Natn. Bur. Stand, vol. 44, 1950, p.109.
[15]. W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature Materials, vol. 187, 1960, p. 869.
[16]. D. Turnbull, “Phase Changes”, Solid State Phys., vol. 3, 1956, p.225.
[17]. D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, J. Phys., vol. 35, 1974, pp. 1-10.
[18]. D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, J. Phy. Chem. Glasses, vol. 7, 1966, pp. 159.
[19]. H. A. Davies, “The formation of metallic glass”, J. Phys. Chem. Glasses, vol. 17, 1976, pp. 159.
[20]. 吳學陞著,”新興材料-塊狀非晶質金屬材料”,工業材料,第149期,1999年。
[21]. A. Inoue, K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, 1995, p. 7.
[22]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Mater. Sci. Eng. A, vol. 226-228, 1997, p. 357.
[23]. A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by Metallic Mold Casting Method”, Mater. Trans. JIM, vol. 32-7, 1991, p. 609.
[24]. A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloy with High Tensile Strength Produced by High-Pressure Die Casting Method”, Mater. Trans. JIM, vol. 33-10, 1992, p.937.
[25]. H. Choi-Yim, “Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites”, Scr. Mater., vol. 45, 2001, pp. 1039-1045.
[26]. Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scr. Mater., vol. 49, 2003, pp. 843-848.
[27]. N. Nishiyama, K. Takenaka, T. Wada, H. Kimura, A. Inoue, “New Pd-based bulk glassy alloys with high glass-forming ability”, Journal of Alloys and Compounds, vol. 434-435, 2007, pp. 138-140.
[28]. F. X. Qin, X. M. Wang, A. Inoue, “Effect of annealing on microstructure and mechanical property of Ti-Zr-Cu-Pd bulk metallic glass”, Intermetallics, vol.15, 2007, pp. 1337-1342.
[29]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol. 36, 1995, pp.866-875.
[30]. A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, vol.29, 1998, pp. 1779-1793.
[31]. A. Inoue, T. Zhang, A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol.269-272, 1998, pp.855-864.
[32]. R. E. Reed-Hill, Physical Metallurgy Principles, Boston, USA, 1994.
[33]. R. W. Cahn, P. Hassen and E. J. Kramer(ed), Materials Science and Technology, vol.9, New York, USA, 1991.
[34]. W. Paul and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, Advances in Physics, 1973, p. 531.
[35]. K. L. Chapra, “Thin Film Phenomena”, McGraw-Hill, 1969.
[36]. B. Li, N. Nordstrom and E. J. Lavernia, “Spray forming of zircaloy-4”, Materials Science and Engineering, vol. 237, 1997, p. 207.
[37]. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, “Formation and evolution properties of clusters in a large liquid metal system during rapid cooling processes”, Materials Science and Engineering, vol.94, 2002, p. 141.
[38]. P. S. Grant, “Spray forming”, Progress in Materials Science, vol.39, 1995, p. 497.
[39]. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami and N. D. Bassim, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Journal of Non-Crystalline Solid, vol. 284, 2001, p. 134.
[40]. S. R. Elliot, “Physics of Amorphous Materials”, 1990, p. 30.
[41]. H. S. Chen, “Zridence of a Glass-Liquid Transition in a Gold-Germanium”, J. Chem. Phys., vol.48, 1968, pp. 2560-2565.
[42]. W. Kauzman, “The nature of the glassy state and the behavior of liquids at low temperatures”, Chem Rev., vol. 43, 1948, pp. 219-225.
[43]. D. Turnbull, “Physics of Non-Crystalline Solids”, 1965, p. 41.
[44]. R. J. Greet, “Test of Adam-Gobbs Liquid Viscosity Model with 0-terphenyl Specific-Heat Data”, Phys., vol. 47, 1967, pp. 2185-2190.
[45]. J. H. Gibbs, “Nature of the Glass Transition and Glass State”, J. Chem. Phys., vol.28, 1958, pp. 373-375.
[46]. M. Hansen, “Constitution of Binary Alloys”, McGrew-Hill, 1958, p.206.
[47]. X. H. Du, C. Huang, C. T. Liu and Z. P. Liu, “New Criterion of Glass Forming Ability for Bulk Metallic Glasses”, J. Appl. Phys., vol. 101, 2007, pp. 88-108.
[48]. 顧宜著,複合材料,新文京開發出版公司,1992年。
[49]. 許樹恩、吳泰伯著,X光繞射原理與材料結構分析,中國材料科學學會,1996年,p. 10。
[50]. A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications, Institute for Material Research”, Tohoku University, Sendai, Japan, 1999.
[51]. A. S. Argon, “Plastic Deformation in Metallic Glasses”, Acta Metallurgica, vol. 27, 1979.
[52]. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sening indentation experiments”, Journal of Materials Research, vol. 7, 1992, p. 1564.
[53]. S. R. Elliot, “Physics of Amorphous Materials”, 2nd Ed., USA, 1990.
[54]. F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, vol. 25, 1997, p. 407.
[55]. J.S.C. Jang, T.H. Li, S.R. Jian, J.C. Huang, and T.G. Nieh, “Effects of characteristics of Mo dispersions on the plasticity of Mg-based bulk metallic glass composites”, Intermetallics, vol. 19, 2011, pp. 738-743.
[56]. A. Inoue, B. L. Shen, H. Koshiba, H. Kato and A. R. Yavari, “Cobalt-Based Bulk Glassy Alloy with Ultrahigh Strength and Soft Magnetic Properties”, Nature Material, vol. 2, 2003, p. 661.
[57]. D. A. Jones, “Principles and Prevention of Corrosion”, 2nd ed., Prentice Hill Inc, 1996.
[58]. A. Takeuchi and A. Inoue, “Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element”, Materials Transactions, Vol. 46, No. 12, 2005, pp. 2818-2820.
[59]. Anstis G.R., Chantikul P., Lawn B.R., Marshall B.D., “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements”, J. of the American Ceramic Society, vol. 64, 198, pp. 533-538.
[60]. D.Y. Maeng, T. S. Kim, J.H. Lee, S. J. Hong, S.K. Seo, B.S. Chun, “Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys”, Scripta Mater., vol. 43, 2000, pp. 385–389.
[61]. H. X. Li, Y. P. Ren, Q. Q. Ma, Jiang Min, G. W. Qin , “Ternary compounds and solid-state phase equilibria in Mg-rich side of Mg-Zn-Ca system at 300 °C”, Trans. Nonferrous Met. Soc. China, vol. 21, 2011, pp. 2147-2153.
[62]. J. F. Nie and B. C. Muddle, “Precipitation Hardening of Mg-Ca-Zn alloys”, Scripta Matetialia, Vol. 37, No. 10, 1997, pp. 1475-1481.
[63]. P. M. Jardima, G. Solórzanoa, and J. B. Vander Sandeb, “Second phase formation in melt-spun Mg–Ca–Zn alloys”, Materials Science and Engineering, A 381, 2004, pp. 196–205.
[64]. J. F. Wang, S. Huang, Y. Y. Wei, S. F. Guo, and F. S. Pan, “Enhanced mechanical properties and corrosion resistance of a Mg–Zn–Ca bulk metallic glass composite by Fe particle addition”, Materials Letters, vol. 91, 2013, pp. 311-314.
[65]. F. X. Qin, G. Q. Xie, Z. H. Dan, S. L. Zhu, and I. Seki, “Corrosion behavior and mechanical properties of Mg-Zn-Ca amorphous alloys”, Intermetallics, vol. 42, 2013, pp. 9-13.
[66]. Y.N. Zhang, G.J. Rocher, B. Briccoli, D. Kevorkov, X.B. Liu, Z. Altounian, and M. Medraj, “Crystallization characteristics of the Mg-rich metallic glasses in the Ca–Mg–Zn system”, J. of Alloys and Compounds, vol. 552, 2013, p. 88-97.
[67]. X. Gu and G.J. Shifleta, F.Q. Guo and S.J. Poon, “Mg–Ca–Zn bulk metallic glasses with high strength and significant ductility”, J. Mater. Res., Vol. 20, No. 8, 2005, pp. 1935-1938.
[68]. H. X. Wang, S. K. Guan, Y. S. Wang, H. J. Liu, H. T. Wang, L. G. Wang, C. X. Ren, S. J. Zhua, K. S. Chen, “In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg–Zn–Ca alloy for bone implant application”, Colloids and Surfaces B: Biointerfaces, vol.88, 2011, pp.254-259. 
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明