博碩士論文 101329007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.145.119.199
姓名 陳俊豪(Chun-hao Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 固溶處裡對SP-700鈦合金微結構及機械性質之影響
(Effect of solution treatment on microstructures and mechanical properties of SP-700 Ti alloy)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響
★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響
★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響
★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究★ 固溶處理對Al-9.0Zn-2.3Mg-xCu合金機械性質與腐蝕性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 藉由微結構觀察、機械性質測試,探討不同固溶溫度對水淬SP-700鈦合金微結構及機械性質之影響;結果顯示SP-700鈦合金於高溫單相區(950℃與900℃)進行固溶熱處理後水淬,微結構為較軟的殘留β(βr)基地相與散佈其中的硬脆針狀α”麻田散鐵相所組成,其抗拉強度與延性均不佳。在較高溫雙相區(850℃與800℃)進行固溶處理後水淬,由於室溫仍介於其合金組成之Ms與Mf溫度之間,此時微結構為較軟的βr基地相、硬脆的初析α相(αp)和α”麻田散鐵相組成,由於拉伸試驗時發生『應力誘發麻田散鐵相變化』,合金具有明顯加工硬化特性。而在較低溫雙相區(750℃)進行固溶處理後水淬,此時合金組成之Ms溫度已低於室溫,其微結構為殘留β基地相與初析α相所組成,水淬與拉伸過程皆無麻田散鐵相產生,不具明顯加工硬化特性,但具有最優異之衝擊韌性,與最高的硬度。
綜合而論,SP-700鈦合金於雙相區進行固溶處理後水淬,始能符合鈦合金裝甲材料規範(MIL-DTL-46077)之板材機械性質最低要求,同時具有高強度增幅與高延性之優異成型特性。其中800℃固溶處理後水淬之合金因含適量硬質αp相,且拉伸過程發生明顯應力誘發麻田散鐵相變化,故呈現最高強度增幅與高延性特性。
摘要(英) Effect of different solution temperature on microstructure and mechanical properties of water quenched SP-700 titanium alloy were studied by analysing the microstructure and mechanical properties .
The results indicated that SP-700 titanium alloy quenched from single-phase region (950℃ and 900℃), the microstructure consists brittle needle shape α" martensite phase and softer retained β phase (βr) base phase, it shows poor tensile strength and ductility. When quenched from two-phase region (850℃ and 800℃), the room temperature is between Ms and Mf, the microstructure consists primary α phase (αp), α" martensite phase and retained β phase (βr) base phase, during tensile test, alloy shows obviously “stress-induced martensite phase transformation”, will have a significant hardening properties. As the solution temperature at 800℃, contents more hard αp phase, will have a higher yield strength, ultimately lead to high strength and high ductility, while the tensile test. Furthermore, quenched from lower temperature (750℃), the Ms temperature of β phase has been below room temperature, the microstructure are retained β phase (βr) and primary α phase (αp), there are no martensite transformation during water quenching and tensile test process, doesn’t have hardening properties, but with the optimum toughness.
In conclusion, SP-700 titanium alloy quenched from two-phase region, the mechanical properties are conform to the titanium armor plate material specification (MIL-DTL-46077), which contains high hardness and elongation, and the solution temperature at 800℃ has best hardness and elongation.
關鍵字(中) ★ SP-700
★ 固溶處理
★ 機械性質
關鍵字(英)
論文目次 中文摘要……………………………………………………………
要………………………………………………………………....
I
英文摘要…………………………………………………………… II
總目錄……………………………………………………………… III
圖目錄……………………………………………………………… V
表目錄……………………………………………………………… VI
一、 前言………………………………..…………………..…….... 1
二、 文獻回顧……………………………………………..……….. 2
2.1 鈦合金分類…….…..…………………………….…..……... 2
2.1.1 純鈦……………….……………………………..…....... 2
2.1.2 α 型鈦合金………………………………………..…… 4
2.1.3 α+β型鈦合金………………………………....……….
…………………………………………..
5
2.1.4 β型鈦合金…………………………………….……… 7
2.1.5 SP-700 钛合金之簡介…….…………..……………… 8
2.2 鈦合金的熱處理………………………..………..……….… 9
2.2.1 鈦合金麻田散鐵相變化……………………………..…
度……………………………………………………...
10
2.2.2 熱處理溫度高於 β-transus 溫度………….…………….
度……………………………………………...
11
2.2.3 熱處理溫度低於 β-transus 溫度……………..………… 12
2.3 塑性變形對鈦合金之影響………………………………….
化………………………………………
13
2.4 鈦合金之衝擊韌性……………………….………………… 14
三、 實驗流程與分析方法………..……………………………… 16
3.1 實驗材料……….…………………………………………… 16
3.2 試片製作……….…………………………………………… 16
3.3 實驗步驟…………………………………….……………… 17
3.4 分析方法……………………………………………………. 18IV
3.4.1 OM 金相觀察………………………….………………. 18
3.4.2 SEM 金相觀察 ………………………………………… 18
3.4.3 XRD分析………………………….………………...…... 18
3.4.4 硬度試驗………...………………………….….………. 19
3.4.5 拉伸試驗………………………...…………..…………. 19
3.4.6 衝擊試驗………………………..……………………… 20
四、結果與討論………………………………………………….... 21
4.1 微結構觀察與分析…………………………………………. 21
4.1.1 光學顯微結構(OM)、電子顯微結構(SEM)金相分析… 21
4.1.2 X 光繞射分析(XRD)……………………….…............... 24
4.1.3 SP-700 鈦合金相變化機制……………………………... 31
4.2 機械性質測試………………………………………………. 32
4.2.1 固溶溫度對硬度之影響……………………………….. 32
4.2.2 固溶溫度對拉伸性質之影響………………………….. 33
4.2.3 固溶溫度對衝擊性質之影響………………………….. 36
4.3 SP-700 鈦合金應用於裝甲車板材之評估………………... 37
五、 結論…………………………………………………………… 39
六、 參考文獻……………………………………………………… 41
參考文獻 [AST] ASTM E8/E8M-11 Standard Test Methods for Tension Testing of Metallic Materials
[AST2] E23-12C Standard Test Methods for Notched Bar Impact Testing of Metallic Materials
[ATT] M. M. Attallah,S. Zabeen,R. J.Cernik,M.Preuss,”Comparative determination of the α/β phase fraction in α+β-titanium alloys using X-ray diffraction and electron micro scopy”, Materials Characterization 60, pp.1248-1256. (2009)
[BOY] R. Boyer, E. W. Collings and G. Welsch, “Materials Properties Handbook: Titanium Alloys”, ASM International, p.11. (1994)
[BOY1] R. Boyer, E. W. Collings and G. Welsch, “Materials Properties Handbook: Titanium Alloys”, ASM International, p.377. (1994)
[BOY2] R. Boyer, E. W. Collings and G. Welsch, “Materials Properties Handbook: Titanium Alloys”, ASM International, p.687. (1994)
[BRE] William D. Brewer, R. Keith Bird, Terryl A. Wallace, “Titanium Alloys and processing for high speed aircraft”, Materials Science and Engineering A243, pp.299-304.(1998)
[BRO] Brooks CR. “Heat treatment, structure and properties of non ferrous alloys”. Metals Park (OH): ASM International, p.329.(1982)
[CHU] C.Y.Chu, C.T.Hsieh, L.W.Tsay, “Microstructure and notched tensile fracture of Ti-6Al-4V to Ti-4.5Al-3V-2Fe-2Mo dissimilar welds”, Materials and Design Vol.63, pp.14-19 (2014)
[DAV] J.R. Davis(EDs), “Metals handbook:Titanium and Titanium alloys”, Materials Park, Oh. : ASM International, p.575.(1998)
[GRO] T. Grosdidier, M.J. Philippe, “Deformation induced martensite and superelasticity in a β-metastable titanium alloy”, Materials Science & Engineering A291 ,pp.218–223.(2000)
[GUN] Gunawarman, Mitsuo Niinomi, Kei-ichi Fukunaga, Daniel Eylon, Shiro Fujishiro, Chiaki Ouchi, “Fracture Characteristics And Microstructureal Factors In Single And Duplex Annealed Ti-4.5Al-3V-2Mo-2Fe”, Material Science & Engineering A308, pp.216-224. (2001)
[GUN1] Gunawaram, Mitsuo Niinomi, ”Effect of β Phase Stability at Room Temperature on Mechanical Properties in β-Rich α+β Type Ti-4.5Al-3V-2Mo-2Fe Alloy”,ISIJ International, Vol.42,No.2, pp.191-199. (2002)
[HIL] I. Hall and C. Hammond,“Relation between crack propagation characteristics and fracture toughness in α+β titanium alloys,” In R. Jaffee (ed.), Plenum, New York, Titanium Science and Technology, Vol. 2, p.1365 .(1973)
[HIL1] Robert E. Reed-Hill, Physical Metallurgy Principle, PWS Publishing Company ,p.706. (1994)
[ISH] M. Ishikawa, O. Kuboyama, M. Niikura and C. Ouchi, “Microstructure and Mechanical Properties Relationship of β-rich α-β Titanium Alloy; SP-700”, Titanium ′92 Science and Technology, edited by F. H. Froes and I. Caplan, Vol. 2 , pp.141-148. (1993)
[KAO] Y. L. Kao, G.C. Tu, C.A. Huang, T.T.Liu, “A Study on the Hardness variation of α- and β-pure titanium with different grain sizes,” Material Science & Engineering ,pp.93-98 A (2005)
[MIL] MIL-DTL-46077F, DETAIL SPECIFICATION: ARMOR PLATE, TITANIUM ALLOY, WELDABLE (29-DEC-1998) [SUPERSEDING MIL-A- 46077E]
[NII] M. Niinomi, I. Inagaki, and T. Kobayashi:Mat. Sci. Tech. 4, p.803. (1988)
[OUC] C. Ouchi, in: S. Fujishiro, D. Eyloy and T. Kishi (Eds.), Metallurgy and technology of practical titanium alloys, TMS, Warrendale,PA, USA, pp. 37–44. (1994)
[OUC1] Chiaki Ouchi, Hideaki Fukai, Kohei Hasegawa, “Microstructural Characteristic And Unique Properties Obtained By Solution Treating Or Aging in β-rich α+β Titanium Alloy”, Material Science & Engineering A263, pp.132-136. (1999)
[POL] I.J.Polmear, Light Alloys Metallurgy of the Light Meral, forth edtion ,p.354 .(2006)
[RED] Reham Reda, Adel A. Nofal, Abdel Hamid A. Hussein, “Effect of Quenching Temperature on the Mechanical Properties of Cast Ti-6Al-4V Alloy,”Journal of Metallurgical Engineering, Vol. 2, No.1, pp.48-54. (2013)
[ROB] Robert E.Reed-Hill, Reza Abbaschian,”Physical Metallurgy Principles,” PWS Publishing Company, pp.579-580. (1994)
[YOS] Yoshikazu Mantani, Yoshito Takemoto, Moritaka Hida, Akira Sakakibara, Mamoru Tajima,” Phase Transformation ofα”Martensite Structure by Aging in Ti-8 mass%Mo Alloy”, Materials Transactions Vol.45 No.5, pp.1629-1634. (2004)
[ZHA] Zhang Zhanying, Wang Weimin, Cao Jimin, Xiao Songtao, ”Effect of Cold Deformation on Microstructure and Mechanical Properties of Ti13Nb13Zr Titanium Alloy” , Hot Working Technology 38, pp.66-68. (2009)
指導教授 李勝隆(Sheng-long Lee) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明