博碩士論文 101329008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.238.248.200
姓名 羅旭峰(Xu-Feng Luo)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 石墨烯與碳系材料應用於鈉離子電池負極之性質研究
(Graphene and carbon-based materials as anodes for sodium-ion batteries)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 高濃度電解質於鋰電池知應用研究★ 熱解法製備硬碳材料應用於鈉離子電池負極
★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響★ 離子液體電解質於鈉離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以Staudenmaier 法和熱還原法製備石墨烯粉體,並以簡易升溫速率調控方式創造孔洞形貌,以調整還原溫度改變官能基含量。將其應用於鈉離子電池之負極材料,於1 M 的NaClO4 有機電解液中測試其儲存鈉離子之電化學特性。首先探討還原溫度之影響:於1100 oC 下還原製備得之石墨烯 (HGNS-1100),呈現僅147 mAh/g 之可逆電容值 (於0.03 A/g)。但300 oC 下還原製備得之石墨烯 (HGNS-300)於相同條件下可得到213mAh/g 的高可逆電容值。同時具有優異的高速充放電能力,於5、10 及20 A/g 之速率下可得104、83 及58 mAh/g 之電容值。這是由於含氧官能基能夠增加層間距和表面活性位置,藉此提升儲存鈉離子之容量。後續探討孔洞形貌之影響:HGNS-300 具有44.6%之高速電容維持率,於相同條件下GNS-300 (不具孔洞形貌) 僅38.6 %之維持率,顯示孔洞形貌有利縮短鈉離子擴散路徑,進一步優化高速維持率。循環壽命方面,HGNS-300 在100 圈充放電後,具有70 %的電容維持率。

為了進一步探討HGNS-300 優異電化學表現之原因,本研究以XPS 探討HGNS-300
電極於不同鈉化/去鈉化電位之表面性質變化,證實於2~0.4 V 之電位區間,鈉離子會儲存於表面活性位置,此活性位置主要來自於表面含氧官能基,其反應式為:>C=O + Na++ e- ↔ >C-O-Na。再經由同步輻射XRD 探討HGNS-300 電極不同鈉化/去鈉化電位之結構變化,可證實其鈉化過程中會於電位低於0.4 V 開始進行插層反應,將鈉離子儲存於碳層間。由於HGNS-300 兼具插層機制與表面氧化還原機制,因此於電容量及高速電容維持率皆有優異的表現。
摘要(英) Holey reduced graphene oxide (RGO) is prepared by a Staudenmaier method, followed by a thermal reduction process. Amounts of functional groups on RGO can be controlled by the reduction temperature. In this study, electrochemical properties of the RGO electrodes are
tested in an ethylene carbonate/diethyl carbonate mixed electrolyte containing 1 M NaClO4. The RGO reduced at 1100 oC (HGNS-1100) with a low content of functional groups shows a reversible capacity of 147 mAh/g (at 0.03 A/g). However, the RGO reduced at 300 oC (HGNS-300; with a higher surface functional group amount) shows a clearly higher capacity
of 213 mAh/g at the same condition. With increasing the charge-discharge to 5, 10 and 20 A/g, a capacity of as high as 104, 83 and 58 mAh/g can be obtained, indicating an excellent rate capability. The functional groups may increase d-spacing and provide reaction sites for sodium ion storage, enhancing charge/discharge capacity. In addition, holey morphology can shorten the path of Na-ion diffusion, optimizing the rate capability. HGNS-300 shows the higher rate capability 44.6 %. GNS-300 (without holey morphology) only has 38.6 % at the same condition. It is also found that the RGO-300 electrode exhibits a capacity retention ratio of approximately 70 % after 100 cycles.

In order to study the reason of excellent electrochemical performance of HGNS-300, the methods of ex-situ XRD and ex-situ XPS are used to analyze the structure and surface properties change during charge/discharge process. It confirms that Na-ion will insert to carbon layers in the lower sodiation voltage (0.4~0.3 V). In the higher sodiation voltage 2~0.4 V, Na-ion will storage at surface active site from surface functional group. The reaction mechanism is “>C=O + Na+ + e- ↔ >C-O-Na”. Due to the two kinds of mechanism that mention in above paragraph, HGNS-300 can own both high capacity and excellent rate capability.
關鍵字(中) ★ 鈉離子電池
★ 負極材料
★ 石墨烯
★ 官能基
★ 孔洞形貌
關鍵字(英) ★ sodium-ion batteries
★ anode
★ holey graphene nanosheets
★ functional groups
論文目次 摘要 ............................................................................................................................................ I
Abstract ..................................................................................................................................... II
致謝 ......................................................................................................................................... IV
總目錄 ..................................................................................................................................... VI
表目錄 ..................................................................................................................................... IX
圖目錄 ...................................................................................................................................... X
第一章 緒論 .............................................................................................................................. 1
第二章 研究背景與文獻回顧 .................................................................................................. 5
2-1 金屬離子電池 ............................................................................................................. 5
2-1-2 鋰離子電池 (Li-ion batteries;LIB) .............................................................. 5
2-1-2 鈉離子電池 (Na-ion batteries;NIB) ............................................................ 6
2-2 碳系負極材料 ............................................................................................................. 9
2-2-1 降低碳材結晶度 ............................................................................................. 9
2-2-2 官能基改質碳材 ............................................................................................ 10
2-2-3 奈米化碳材 ................................................................................................... 11
2-3 石墨烯概論 ............................................................................................................... 16
2-4 石墨烯材料特性對金屬離子儲存之影響 ............................................................... 18
2-4-1 石墨烯之層數 ............................................................................................... 18
2-4-2 孔洞形貌 ....................................................................................................... 18
2-4-3 官能基含量與種類 ....................................................................................... 19
2-5 RGO 電極於鈉離子電池之應用 .............................................................................. 24
第三章 實驗方法與步驟 ........................................................................................................ 28
3-1 碳材料製備 ............................................................................................................... 28
3-1-1 石墨烯 (Reduced Graphene Oxide,RGO) ................................................. 28
3-1-2 石墨微片 (Graphite Nanoplatelets,GNP) .................................................. 28
3-1-3 多壁奈米碳管 (Multi-layers Carbon Nanotube,MWCNT) ...................... 28
3-1-4 硬碳 (Hard Carbon,HC)............................................................................. 29
3-1-4 活性碳 (Activated Carbon,AC) ................................................................. 29
3-2 材料特性鑑定 ............................................................................................................ 29
3-2-1 碳材形貌之分析 ........................................................................................... 29
3-2-2 碳材結晶結構分析 ....................................................................................... 29
3-2-3 石墨烯缺陷結構鑑定 ................................................................................... 30
3-2-4 碳材官能基鑑定 ........................................................................................... 30
3-2-5 石墨烯比表面積量測 ................................................................................... 30
3-3 電化學測試實驗步驟 ................................................................................................ 30
3-3-1 循環伏安法 (cyclic voltammetry,CV) ...................................................... 31
3-3-2 計時電位法 (chronopotentimetry,CP) ...................................................... 32
3-3-3 交流阻抗 (electrochemical impedance spectroscopy,EIS) ....................... 32
3-4 碳材料鈉化/去鈉化反應機構鑑定 ........................................................................... 32
第四章 結果與討論 ................................................................................................................ 34
4-1 奈米碳材負極可行性探討 ........................................................................................ 34
4-1-1 表面形貌觀察 ................................................................................................ 34
4-1-2 材料結構分析 ................................................................................................ 34
4-1-3 電化學性質 .................................................................................................... 34
4-2 孔洞形貌和官能基對電化學性質之影響 ............................................................... 41
4-2-1 孔洞形貌觀察 ................................................................................................ 41
4-2-2 材料結構分析 ................................................................................................ 42
4-2-3 石墨烯缺陷鑑定 ............................................................................................ 42
4-2-4 官能基鑑定 .................................................................................................... 43
4-2-5 RGO 比表面積量測 ....................................................................................... 44
4-2-5 RGO 電極電化學特性 ................................................................................... 52
4-2-6 材料性質暨電化學表現統整 ....................................................................... 66
4-3 RGO 儲存鈉離子之反應機構探討 .......................................................................... 67
4-3-1 以XRD 鑑定結構變化 ................................................................................. 67
4-3-2 以XPS 鑑定表面性質變化 ........................................................................... 68
4-3-3 以電化學法鑑定反應機制 ............................................................................ 68
4-4 碳材結構於鈉離子儲存之影響 ............................................................................... 75
4-4-1 形貌觀察 ....................................................................................................... 75
4-4-2 材料結構分析 ............................................................................................... 75
4-4-3 含氧量鑑定 ................................................................................................... 75
4-4-4 材料比表面積 ................................................................................................ 76
4-4-5 電化學特性 .................................................................................................... 76
第五章 結論 ............................................................................................................................ 89
參考文獻 ................................................................................................................................. 91
參考文獻 參考文獻
1. Huilin Pan, Yong-Sheng Hu, and Liquan Chen, Room-temperature stationary
sodium-ion batteries for large-scale electric energy storage. Energy & Environmental
Science, 2013. 6: p. 2338-2360.
2. Bruce Dunn, Haresh Kamath, and Jean-Marie Tarascon, Electrical energy storage for
the grid: a battery of choices. Science, 2011. 334: p. 928-935.
3. Languang Lu, et al., A review on the key issues for lithium-ion battery management in
electric vehicles. Journal of Power Sources, 2013. 226: p. 272-288.
4. Alexander Kraytsberg and Yair Ein-Eli, Higher, stronger, better… A review of 5 volt
cathode materials for advanced lithium-ion batteries. Advanced Energy Materials,
2012. 2: p. 922-939.
5. Jay F Whitacre, et al., An aqueous electrolyte, sodium ion functional, large format
energy storage device for stationary applications. Journal of Power Sources, 2012.
213: p. 255-264.
6. Veronica Palomares, et al., Na-ion batteries, recent advances and present challenges
to become low cost energy storage systems. Energy & Environmental Science, 2012. 5:
p. 5884-5901.
7. Ver´onica Palomares, et al., Update on Na-based battery materials. A growing
research path. Energy & Environmental Science, 2013. 6: p. 2312-2337.
8. Sung-Wook Kim, et al., Electrode materials for rechargeable sodium-ion batteries:
potential alternatives to current lithium-ion batteries. Advanced Energy Materials,
2012. 2: p. 710-721.
9. Pascal Ge and Mireille Fouletier, Electrochemical intercalation of sodium in graphite.
Solid State Ionics, 1988. 20-30: p. 1172-1175.
10. Marca M. Doeff, et al., Electrochemical Insertion of Sodium into Carbon. Journal of the electrochemical society, 1993. 140: p. 169-170.
11. Yun-Xiao Wang, et al., Reduced graphene oxide with superior cycling stability and
rate capability for sodium storage. Carbon, 2013. 57: p. 202-208.
12. Hwee Ling Poh, et al., Graphenes prepared by Staudenmaier, Hofmann and Hummers
methods with consequent thermal exfoliation exhibit very different electrochemical
properties. Nanoscale, 2012. 4: p. 3515-3522.
13. Bing Zhao, et al., Supercapacitor performances of thermally reduced graphene oxide.
Journal of Power Sources, 2012. 198: p. 423-427.
14. Chen Zhang, et al., Towards low temperature thermal exfoliation of graphite oxide for
graphene production. Carbon, 2013. 62: p. 11-24.
15. Jian Ye, et al., Supercapacitors based on low-temperature partially exfoliated and
reduced graphite oxide. Journal of Power Sources, 2012. 212: p. 105-110.
16. Wei Lv, et al., Low-temperature exfoliated graphenes vacuum-promoted exfoliation
and electrochemical energy storage. ACS NANO, 2009. 3: p. 3730-3736.
17. Xin Tong, et al., Controllable synthesis of graphene sheets with different numbers of
layers and effect of the number of graphene layers on the specific capacity of anode
material in lithium-ion batteries. Journal of Solid State Chemistry, 2011. 184: p.
982-989.
18. Gouri Radhakrishnan, et al., Fabrication and electrochemical characterization of
single and multi-Layer graphene anodes for lithium-ion batteries. Journal of The
Electrochemical Society, 2012. 159: p. A752-A761.
19. Elad Pollak, et al., The interaction of Li+ with single-layer and few-layer graphene.
Nano Lett, 2010. 10: p. 3386-3388.
20. Xin Zhao, et al., Flexible holey graphene paper electrodes with enhanced rate
capability for energy storage applications. ACS NANO, 2011. 5: p. 8739-8749.
21. Dengyu Pan, et al., Li storage properties of disordered graphene nanosheets. Chemistry of Materials, 2009. 21: p. 3136-3142.
22. Zhuangjun Fan, et al., Porous graphene networks as high performance anode
materials for lithium ion batteries. Carbon, 2013. 60: p. 558-561.
23. Chananate Uthaisar, Veronica Barone, and Bradley D. Fahlman, On the chemical
nature of thermally reduced graphene oxide and its electrochemical Li intake capacity.
Carbon, 2013. 61: p. 558-567.
24. Yuxia Shen, et al., Structural evolution of functionalized graphene sheets during
solvothermal reduction. Carbon, 2013. 56: p. 132-138.
25. Hye Ryung Byon, et al., Role of oxygen functional groups in carbon
nanotube/graphene freestanding electrodes for high performance lithium batteries.
Advanced Functional Materials, 2013. 23: p. 1037-1045.
26. Zhong-Shuai Wu, et al., Doped graphene sheets as anode materials with superhigh
rate and large capacity for lithium ion batteries. ACS NANO, 2011. 5: p. 5463-5471.
27. Haibo Wang, et al., Nitrogen-doped graphene nanosheets with excellent lithium
storage properties. Journal of Materials Chemistry, 2011. 21: p. 5430-5434.
28. Beng Khong Ong, et al., Graphenes prepared by hummers, staudenmaier and hofmann
methods for Analysis of TNT-based nitroaromatic explosives in seawater.
Electroanalysis, 2012. 24: p. 2085-2093.
29. Yunpu Zhai, et al., Carbon materials for chemical capacitive energy storage.
Advanced Materials, 2011. 23: p. 4828-4850.
30. Martin Winter and Ralph J. Brodd, What are batteries, fuel cells, and supercapacitors.
Chemical Reviews, 2004. 104: p. 4245-4269.
31. Guoping Wang, Lei Zhang, and Jiujun Zhang, A review of electrode materials for
electrochemical supercapacitors. Chemistry Society Review, 2012. 41: p. 797-828.
32. Patrice Simon and Yury Gogotsi, Materials for electrochemical capacitors. Nature
Materials, 2008. 7: p. 845-854.
Michio Inagaki, Hidetaka Konno, and Osamu Tanaike, Carbon materials for
electrochemical capacitors. Journal of Power Sources, 2010. 195: p. 7880-7903.
34. Xu Yang, et al., Enhanced high rate and low-temperature performances of mesoporous
LiFePO4/Ketjen Black nanocomposite cathode material. Electrochimica Acta, 2013.
114: p. 259-264.
35. Nithinai Wongittharom, et al., Electrochemical performance of rechargeable
Li/LiFePO4 cells with ionic liquid electrolyte: Effects of Li salt at 25°C and 50°C.
Journal of Power Sources, 2013. 240: p. 676-682.
36. Yuliang Cao, et al., Sodium ion insertion in hollow carbon nanowires for battery
applications. Nano Letters, 2012. 12: p. 3783-3787.
37. Naoaki Yabuuchi, et al., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant
elements for rechargeable Na batteries. Nature Materials, 2012. 11: p. 512-517.
38. R. Ko¨tz and M. Carlen, Principles and applications of electrochemical capacitors.
Electrochimica Acta, 2000. 45: p. 2483-2498.
39. Shinichi Komaba, et al., Electrochemical Na insertion and solid electrolyte interphase
for hard-carbon electrodes and application to Na-ion batteries. Advanced Functional
Materials, 2011. 21: p. 3859-3867.
40. Kun Tang, et al., Hollow carbon nanospheres with superior rate capability for
sodium-based batteries. Advanced Energy Materials, 2012. 2: p. 873-877.
41. Kannan Balasubramanian and Marko Burghard, Chemically functionalized carbon
nanotubes. Small, 2005. 1: p. 180-192.
42. Seung Woo Lee, et al., High-power lithium batteries from functionalized
carbon-nanotube electrodes. Nature Nanotechnology, 2010. 5: p. 531-537.
43. Seung Woo Lee, et al., Self-standing positive electrodes of oxidized few-walled carbon
nanotubes for light-weight and high-power lithium batteries. Energy & Environmental
Science, 2012. 5: p. 5437-5444.
Seung Woo Lee, et al., Nanostructured carbon-based electrodes: bridging the gap
between thin-film lithium-ion batteries and electrochemical capacitors. Energy &
Environmental Science, 2011. 4: p. 1972-1985.
45. Hye Ryung Byon, et al., Thin films of carbon nanotubes and chemically reduced
graphenes for electrochemical micro-capacitors. Carbon, 2011. 49: p. 457-467.
46. Yuyan Shao, et al., Surface-driven sodium ion energy storage in nanocellular carbon
foams. Nano Leterst, 2013. 13: p. 3909-3914.
47. Tomohiro Matsushita, Yosuke Ishii, and Shinji Kawasaki, Sodium ion battery anode
properties of empty and C60-inserted single-walled carbon nanotubes. Materials
Express, 2013. 3: p. 30-36.
48. Heng-guo Wang, et al., Nitrogen-doped porous carbon nanosheets as low-cost,
high-performance anode material for sodium-ion batteries. ChemSusChem
Communications, 2013. 6: p. 56-60.
49. H. F. Xiang, et al., Graphene sheets as anode materials for Li-ion batteries:
preparation, structure, electrochemical properties and mechanism for lithium storage.
RSC Advances, 2012. 2: p. 6792-6799.
50. Wonkyun Lee, ShinyaSuzuki, and MasaruMiyayama, Lithium storage properties of
graphene sheets derived from graphite oxides with different oxidation degree.
Ceramics International, 2013. 39: p. S753-S756.
51. Yuanyue Liu, et al., Feasibility of Lithium Storage on Graphene and Its Derivatives.
The Journal of Physical Chemistry Letters, 2013. 4: p. 1737-1742.
52. Eunseok Lee and Kristin A. Persson, Li absorption and intercalation in single layer
graphene and few layer graphene by first principles. Nano Letters, 2012. 12: p.
4624-4628.
53. P. Thomas, J. Ghanbaja, and D. Billaud, Electrochemical insertion of sodium in
pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte. Electrochimica Acta, 1999. 45: p. 423-430.
54. D.A. Stevens and J.R. Dahn, High capacity anode materials for rechargeable
sodium-ion batteries. Journal of The Electrochemical Society, 2000. 147: p.
1271-1273.
55. Ricardo Alcantara, et al., Carbon black-a promising electrode material for sodium-ion
batteries. Electrochemistry Communications, 2001. 3: p. 639-642.
56. P. Thomas and D. Billaud, Sodium electrochemical insertion mechanisms in various
carbon fibres. Electrochimica Acta, 2001. 46: p. 3359-3366.
57. D.A. Stevens and J.R. Dahn, The mechanisms of lithium and sodium insertion in
carbon materials. Journal of The Electrochemical Society, 2001. 148: p. A803-A811.
58. P. Thomas and D. Billaud, Electrochemical insertion of sodium into hard carbons.
Electrochimica Acta, 2002. 47: p. 3303-3307.
59. R. Alca´ntara, J.M. Jime´nez Mateos, and J.L. Tirado, Negative Electrodes for
Lithium- and Sodium-Ion Batteries Obtained by Heat-Treatment of Petroleum Cokes
below 1000°C. Journal of The Electrochemical Society, 2002. 149: p. A201-A205.
60. M. Rosa Palacı´n, Recent advances in rechargeable battery materials: a chemist′s
perspective. Chemical Society Reviews, 2009. 38: p. 2565-2575.
61. William S. Hummers JR and Richard E. Offeman, Preparation of graphitic oxide.
Journal of American Chemical Society, 1958. 80: p. 1339.
62. A.K. Geim and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6: p.
183-191.
63. Yuan-Xiang Fu, et al., Production of monolayer, trilayer, and multi-layer graphene
sheets by a re-expansion and exfoliation method. Journal of Materials Science, 2013.
49: p. 2315-2323.
64. Xiaogan Liang, et al., Formation of bandgap and subbands in graphene nanomeshes
with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Letters, 2010. 10: p. 2454-60.
65. Myungwoong Kim, et al., Fabrication and characterization of large-area,
semiconducting nanoperforated graphene materials. Nano Letters, 2010. 10: p.
1125-1131.
66. Zhiyuan Zeng, et al., Fabrication of graphene nanomesh by using an anodic
aluminum oxide membrane as a template. Advanced Material, 2012. 24: p. 4138-4142.
67. Alexander Sinitskii and James M. Tour, Patterning graphene through the
self-assembled templates toward periodic two-dimensional graphene nanostructures
with semiconductor properties. Journal of American Chemical Society, 2010. 132: p.
14730-14732.
68. Li Li Zhang, et al., Highly conductive and porous activated reduced graphene oxide
films for high-power supercapacitors. Nano Letters, 2012. 12: p. 1806-1812.
69. Jiacheng Wang and Stefan Kaskel, KOH activation of carbon-based materials for
energy storage. Journal of Materials Chemistry, 2012. 22: p. 23710-23725.
70. Xiluan Wang, et al., Solution-processable graphene nanomeshes with controlled pore
structures. Scientific Reports, 2013. 3: Article number 1996.
71. Cecilia Mattevi, et al., Evolution of electrical, chemical, and structural properties of
transparent and conducting chemically derived graphene thin films. Advanced
Functional Materials, 2009. 19: p. 2577-2583.
72. D.W. Boukhvalov and M.I. Katsnelson, Modeling of graphite oxide. Journal of
American Chemical Society, 2008. 130: p. 10697-10701.
73. Héctor A. Becerril, et al., Evaluation of solution-processed reduced graphene oxide
films as transparent conductors. ACS NANO, 2008. 2: p. 463-470.
74. Goki Eda, Giovanni Fanchini, and Manish Chhowalla, Large-area ultrathin films of
reduced graphene oxide as a transparent and flexible electronic material. Nature
Nanotechnology, 2008. 3: p. 270-274.
Shuai Wang, et al., Band-like Transport in Surface-Functionalized Highly
Solution-Processable Graphene Nanosheets. Advanced Materials, 2008. 20: p.
3440-3446.
76. Yongchao Si and Edward T. Samulski, Synthesis of water soluble graphene. Nano
Letters, 2008. 8: p. 1679-1682.
77. Dan Li, et al., Processable aqueous dispersions of graphene nanosheets. Nature
Nanotechnology, 2008. 3: p. 101-105.
78. Veronica Augustyn, et al., High-rate electrochemical energy storage through Li+
intercalation pseudocapacitance. Nature Materials, 2013. 12: p. 518-522.
79. Kian Ping Loh, et al., Graphene oxide as a chemically tunable platform for optical
applications. Nature Chemistry, 2010. 2: p. 1015-1024.
80. Daniel R. Dreyer, et al., The chemistry of graphene oxide. Chemistry Society Reviews,
2010. 39: p. 228-240.
81. Da Chen, Hongbin Feng, and Jinghong Li, Graphene oxide: preparation,
functionalization, and electrochemical applications. Chemical Reviews, 2012. 112: p.
6027-6053.
82. Fabrice M. Courtel, et al., Water-soluble binders for MCMB carbon anodes for
lithium-ion batteries. Journal of Power Sources, 2011. 196: p. 2128-2134.
83. Heon-Cheol Shin, et al., Lithium insertion into chemically etched multi-walled carbon
nanotubes. Journal of Solid State Electrochemistry, 2004. 8: p. 908-913.
84. Shubin Yang, et al., Electrochemical performance of arc-produced carbon nanotubes
as anode material for lithium-ion batteries. Electrochimica Acta, 2007. 52: p.
5286-5293.
85. Guoxiu Wang, et al., Graphene nanosheets for enhanced lithium storage in lithium ion
batteries. Carbon, 2009. 47: p. 2049-2053.
86. Peichao Lian, et al., Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochimica Acta, 2010. 55: p. 3909-3914.
87. M.A. Akhukov, et al., Dangling bonds and magnetism of grain boundaries in
graphene. Physical Review B, 2012. 85.
88. Manabu Kiguchi, et al., Magnetic edge state and dangling bond state of nanographene
in activated carbon fibers. Physical Review B, 2011. 84.
89. Biwei Xiao, et al., Graphene nanoribbons derived from the unzipping of carbon
nanotubes: controlled synthesis and superior lithium storage performance. The
Journal of Physical Chemistry C, 2014. 118: p. 881-890.
90. Sasha Stankovich, et al., Synthesis of graphene-based nanosheets via chemical
reduction of exfoliated graphite oxide. Carbon, 2007. 45: p. 1558-1565.
91. A.C. Ferrari, et al., Raman spectrum of graphene and graphene layers. Physical
Review Letters, 2006. 97.
92. E.H. Martins Ferreira, et al., Evolution of the Raman spectra from single-, few-, and
many-layer graphene with increasing disorder. Physical Review B, 2010. 82.
93. Soumen Das, et al., Oxygenated functional group density on graphene oxide: its effect
on cell toxicity. Particle & Particle Systems Characterization, 2013. 30: p. 148-157.
94. Zhiting Liu, et al., Controlling and formation mechanism of oxygen-containing groups
on graphite oxide. Industrial & Engineering Chemistry Research, 2014. 53: p.
253-258.
95. Wenzhong Shen, Zhijie Li, and Yihong Liu, Surface chemical functional groups
modification of porous carbon. Recent Patents on Chemical Engineering, 2008. 1: p.
27-40.
96. Tian LeiLei, et al., Mechanism of intercalation and deintercalation of lithium ions in
graphene nanosheets. Chinese Science Bulletin, 2011. 56: p. 3204-3212.
97. Sudeshna Chattopadhyay, et al., In situ X-ray study of the solid electrolyte interphase
(SEI) formation on graphene as a model Li-ion battery anode. Chemistry of Materials 2012. 24: p. 3038-3043.
98. Florian Banhart, Jani Kotakoski, and Arkady V. Krasheninnikov, Structural defects in
graphene. ACS NANO, 2011. 5: p. 26-41.
99. Pablo A. Denis and Federico Iribarne, Comparative study of defect reactivity in
graphene. The Journal of Physical Chemistry C, 2013. 117: p. 19048-19055.
100. Kentaro Kuratani, et al., Na-ion capacitor using sodium pre-doped hard carbon and
activated carbon. Electrochimica Acta, 2012. 76: p. 320-325.
101. Sebastian Wenzel, et al., Room-temperature sodium-ion batteries: Improving the rate
capability of carbon anode materials by templating strategies. Energy &
Environmental Science, 2011. 4: p. 3342-3345.
102. Wei Luo, et al., Carbon nanofibers derived from cellulose nanofibers as a long-life
anode material for rechargeable sodium-ion batteries. Journal of Materials Chemistry
A, 2013. 1: p. 10662-10666.
103. Zhaohui Wang, et al., Functionalized N-doped interconnected carbon nanofibers as an
anode material for sodium-ion storage with excellent performance. Carbon, 2013. 55:
p. 328-334.
104. Shaobin Tang and Shiyong Zhang, Adsorption of epoxy and hydroxyl groups on zigzag
graphene nanoribbons: Insights from density functional calculations. Chemical
Physics, 2012. 392: p. 33-45.
105. Nahid Ghaderi and Maria Peressi, First-principle study of hydroxyl functional groups
on pristine, defected graphene, and graphene epoxide. Journal of Physical Chemistry,
2010. 114: p. 21625-21630.
106. Hideto Azuma, et al., Advanced carbon anode materials for lithium ion cells. Journal
of Power Sources, 1999. 81(1-7).
107. Ruizhi Yang, et al., Monodispersed hard carbon spherules as a catalyst support for the
electrooxidation of methanol. Carbon, 2005. 43: p. 11-16.
Qing Wang, et al., Monodispersed hard carbon spherules with uniform nanopores.
Carbon, 2001. 39: p. 2211-2214.
109. Young-Chul Chang, et al., Anodic performances of mesocarbon microbeads (MCMB)
prepared from synthetic naphthalene isotropic pitch. Carbon, 1999. 37: p. 1285-1297.
110. R. Alca´ntara, et al., Characterisation of mesocarbon microbeads (MCMB) as active
electrode material in lithium and sodium cells. Carbon, 2000. 38: p. 1031-1041.
111. Zhuangjun Fan, et al., Asymmetric supercapacitors based on graphene/MnO2 and
activated carbon nanofiber electrodes with high power and energy density. Advanced
Functional Materials, 2011. 21: p. 2366-2375.
112. Xiaoyan Zhang, et al., Effect of aqueous electrolytes on the electrochemical behaviors
of supercapacitors based on hierarchically porous carbons. Journal of Power Sources,
2012. 216: p. 290-296.
113. Kazuma Gotoh, et al., NMR study for electrochemically inserted Na in hard carbon
electrode of sodium ion battery. Journal of Power Sources, 2013. 225: p. 137-140.
114. Dingding Yuan, et al., Synthesis and electrochemical behaviors of layered
Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion
batteries. Journal of Materials Chemistry A, 2013. 1: p. 3895-3899.
115. Dingding Yuan,, et al., P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with
High-capacity for Sodium-ion Battery. Electrochimica Acta, 2014. 116: p. 300-305.
116. R. A. Shakoor, et al., A combined first principles and experimental study on
Na3V2(PO4)2F3 for rechargeable Na batteries. Journal of Materials Chemistry, 2012.
22: p. 20535-20541.
117. Young-Uk Park, et al., A new high-energy cathode for a Na-ion battery with ultrahigh
stability. Journal of The American Chemical Society, 2013. 135: p. 13870-13878.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2014-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明