博碩士論文 101329009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.87.250.158
姓名 陳儀安(Yi-an Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 使用化學沉澱法合成新式導質子型固態氧 化物燃料電池陰極材料Ba0.5Sr0.5Fe1-xCuxO3-δ
(Synthesis of Novel Cathode Materials Ba0.5Sr0.5Fe1-xCuxO3-δ for P-SOFC by Chemical Precipitation Method)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 以微電鍍法製備三維銅錫介金屬化合物微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用化學沉澱法,製作適用於導氫型固態燃料電池陰極材料Ba0.5Sr0.5Fe1-XCuXO3-δ的先驅物,進而煆燒獲得氧化物粉體,實驗時,經由調配藥品比例,經由調整滴定pH值,前驅粉體的煆燒溫度等因素,研究其結晶性質、表面形貌、熱性質分析、電化學性質等,以評估其作為導質子型固態氧化物燃料電池陰極的可行性。實驗結果顯示唯有在特定之pH值下,其煆燒過後之產物才會形成特定化學劑量比之Ba0.5Sr0.5Fe1-XCuXO3-δ鈣鈦礦型結構,由X光繞射分析儀(XRD)得知,當銅的添加量為0.3以下時,煆燒過後之XRD繞射圖顯示其產物為純的鈣鈦礦結構,但當銅的添加量大於0.4時則開始出現二次相;而隨著Cu添加量增加,氧化物各個繞射訊號皆往低角度偏移,此乃Cu的原子尺寸較Fe大所造成,利用掃描式電子顯微鏡(SEM)觀察其形貌為多孔性結構,隨著煆燒溫度的增加,固體顆粒明顯增大,部分顆粒間介面消失,孔隙度減少,在材料導電度方面銅的添加量為0.2的條件下導電度達最高94.3 S/cm。
摘要(英) Precipitation of carbonates was used to prepare the precursor of Ba0.5Sr0.5Fe1-xCuxO3-δ, which was the potential material for making of the cathode used in the proton-conducting solid oxide fuel cells. In the precipitation process, a solution of nitrates was reacted with the saturated solution of ammonium carbonate by controlling the pH, After filtration,the precipitate was dried and calcined in a furnace controlled at 800, 850, 900, 950, 1000˚C 2 hr to form the oxide. The effects of stoichiometric ratio between Fe/Cu and calcination temperature on the morphology, crystalline structure of the catalysts and cathodic behavior used in P-SOFC were of interest. Examination through field emission scanning electron microscope (FE-SEM) equipped with energy dispersive x-ray analysis (EDS), we could compare the morphology and composition for the powders. Analysis by x-ray diffraction (XRD), we could distinguish the crystal structures. The gravimetrical and thermal properties of various precursors in calcination process were determined by thermal gravimetrical analysis (TGA) and Differential Scanning Calorimeter (DSC). After making the calcined oxides as the cathode catalysts in a single cell, I-V polarization test were conducted to evaluate the electrochemical performance. The result showed that Pure perovskite structure were observed in X-ray diffraction (XRD) measurement with Cu-dopping at X = 0.1 to 0.3. The porosity was determined to be 36.4% by means of Archimedes method.The electrical conductivity of Ba0.5Sr0.5Fe0.8Cu0.2O3-δ reaches the maximum value of 94.3 S/cm at 450 °C,
Preliminary results demonstrate that the cobalt-free oxide Ba0.5Sr0.5Fe1-XCuXO3-δ is a very promising cathode material for application in P -SOFC.
關鍵字(中) ★ 固態氧化物燃料電池
★ 化學沉澱法
★ 陰極
關鍵字(英) ★ SOFC
★ Chemical precipitation
★ cathode
論文目次 摘要 ................................ i
Abstract ........................... ii
致謝 ................................ iii
目錄 ................................ iv
表目錄 ............................... viii
圖目錄 ............................... ix
第一章 緒論 ........................... 1
1-1 前言 ............................. 1
1-2 研究動機與目的...................... 4
第二章 原理與文獻回顧.................... 8
2-1固態氧化物燃料電池(SOFC)簡介......... 8
2-2固態氧化物燃料電池工作原理............. 9
2-3固態氧化物燃料電池之極化現象........... 11
2-4質子傳導型固態氧化物燃料電池之材料性質... 13
2-4-1 陽極材料........................ 13
2-4-2 電解質材料....................... 14
2-4-3 陰極材料......................... 15
2-4-4 陰極材料結構...................... 16
2-5固態氧化物燃料電池裝置類型與支撐結構..... 19
2-6固態氧化物電池材料常用合成法............ 20
2-7文獻回顧............................ 24
2-7-1 SOFC 陰極材料文獻回顧.............. 24
2-7-2 電化學交流阻抗文獻回顧.............. 25
第三章 實驗方法.......................... 28
3-1 實驗藥品與材料....................... 28
3-2 實驗製備與流程....................... 28
3-2-1 BSCF 陰極粉末製備.................. 28
3-2-2 塊材成型與燒結..................... 29
3-2-3 陰極膏製備......................... 29
3-2-4 全電池製備......................... 30
3-3 材料性質分析.......................... 31
3-3-1 X光繞射儀(X-Ray Diffractormeter, XRD).. 31
3-3-2 掃描式電子顯微鏡(SEM) 與能量散射光譜儀(EDS).. 32
3-3-3 熱性質分析儀(TGA、DSC)............. 32
3-3-4 感應耦合電漿質譜分析儀(ICP-MS........ 33
3-3-5 孔隙率量測......................... 34
3-3-6 電導率量測 ........................ 35
第四章 研究結果 .......................... 36
4-1 鈣鈦礦容忍因子........................ 36
4-2 前驅溶液滴定結果...................... 36
4-3 陰極粉體之 XRD分析.................... 37
4-4 SEM表面分析.......................... 39
4-4-1 陰極粉體表面形貌..................... 39
4-4-2 全電池陰極表面與斷面形貌............... 40
4-5 EDS半定量分........................... 41
4-6 ICP-MS 分析.......................... 41
4-7 粉末熱重分析........................... 41
4-8 熱式差掃描分析......................... 42
4-9 材料電導率分析......................... 42
4-10 孔隙率量測........................... 42
4-11 直流電極化曲線(IV&IP Curve)分析........ 43
第五章 討論 .............................. 44
5-1 改變滴定pH值之探討..................... 44
5-2 改變添加銅含量之探討.................... 45
5-3 改變煆燒溫度的探討...................... 47
5-4 改變分散劑含量的探討.................... 48
5-5 陰極粉體煆燒過程的探討................... 48
5-6 電導率的探討........................... 49
第六章 結論................................ 51
第七章 參考文獻..............................53
參考文獻 [1] W.R.Grove, Phil. Mag. Ser, 3, 127, 1839.
[2] Heinzel, Journal Electrochem. Soc, 116,1124, 1969.
[3] 衣寶廉,燃料電池-原理與應用,2005.
[4] http://www.lme.com/en-gb/pricing-and-data/
[5] T.Fukui, S.Ohara, K.Murata, H.Yoshida, K.Miura and T.Inagaki, Journal of Power Sources, 106, 142, 2002.
[6] N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, T. Kawada and M. Dokiya, Journal of Electrochem. Soc., 147, 3178-3182, 2000.
[7] J. Fleig, J. Power Sources, 105, 228-238 ,2002.
[8] P. J. Gellings and H. J. M. Bouwmeester,The CRC Handbook of Solid State Electrochemistry, Chapter 12, CRC Press, Florida, 413-418 , 1997.
[9] B. C. H. Steele, Solid State Ionics, 129, 95-110, 2000.
[10] Z. P. Shao and S. M. Haile, Nature, 431, 170-173, 2004.
[11] FS Baumann, J Fleig, HU Habermeier, J Maier,Solid State Ionics 177,
3187-3191, 2006.
[12] E Bucher, A Egger, P Ried, W Sitte, P Holtappels, solid state
Ionics, 179, 1032-1035, 2008
[13] W Lai, S M Haile, Phys. Chem. Chem. Phys.,10,865-883,2008.
[14] B Wei, Z Lu, XQ Huang, ML Liu, N Li, WH Su., Journal of Power
Sources, 176, 1–8, 2008;.
[15] H.H. Wang, C Tablet, A Feldhoff, J Caro., Advanced Materials; 17,1785–8,2005
[16] J. I. Jung, S T Misture, D D Edwards, J. Electroceramis, 24: 261-269,
2008.
[17] Y. T. Lin, National Taipei University of Technology, 2009.
[18] M. C. Wiliams,“Solid oxide fuel cell:Fundamentals to system”, Fuel
ell, 78-85, 2007.
[19] Z. H. Zeng, National Central University, 2012.
[20] J. Chen, L. S. Jiang, B. Chi, J. Pua, J. Li, F. Liang, Lina, Journal of
Power Sources, 183 , 586–589,2008.
[21] I. T. Ellen and A.V. Virkar, chapter 9, Elsevier, Oxford, 229-260, 2003.
[22] S. Tanasescu, N. D. Totir and D. I. Marchidan, Solid State Ionics 119,
311- 315,1999.
[23] E. Maguire, B. Gharbage, F. M. B. Marques and J. A. Labrincha,
, Solid State Ionics, 127, 329- 335,2000.
[24] N. Q. Minh, Solid State Lonic, 174,271 ,2004.
[25] 黃鎮江,燃料電池,滄海出版社第3板,2006
[26] U. Schubert, N. Husing, 2004.
[27] D. H. Huang, National Taiwan Normal University, 2004.
54
[28] S. Saha, S. J. Ghanawat, R. D. Purohit, Journal of Materials Science, 41,
1939-1943, 2006.
[29] M. Q. Wang, National Cheng Kung University , 2004
[30] W. Zhou, Z. Shao, R. Ran, H. Gu, W. Jin, and N. Xu, The American
Ceramic Society, 91, 1155-1162, 2008.
[31] C. H. Wu, National Taipei University of Technology, 2006.
[32] Y. Y. Yang, NationalTsing Hua University, 2005.
[33] S. C. Yan, National Cheng Kung University, 2005.
[34] R. J. Bell, G. J. Millar, J. Drennan, Solid State Ionics, 131, 211-220,
2000.
[35] E. Maguire, B. Gharbage, F. M. B. Marques and J. A. Labrincha, Solid
State Ionics, 127, 329- 335, 2000.
[36] Z. H. Chen, R. Ran, W . Zhou, Z. P. Shao, S. M. Liu, Electrochimica
Acta,52, 7343-7351, 2007.
[37] A.Y.Yan,L. Bin, Y.L Deng, Z. J. Tian, D. Z. wang, M. J. Cheng,
Applied Catalysis, 80, 24–31, 2008 [38] J. I. Jung, S. T. Misture. D.D. Edwards, Journal of Electroceramics, 24, 261-269, 2010
[39] E. Warburg, Annalen der Physik, 6, 125-135, 1901.
[40] J. E. B. Randles, Kinetics of rapid electrode reactions, Discussions of
the Faraday Society, 1, 11-19, 1947.
[41] Q. A. Huang, R. Hui, B. Wang, J. Zhang, Electrochimica Acta, 52,
8144-8164, 2007.
[42] Y. Lin, R. Ran, Y. Zheng, Z. P. Shao,W. Q. Jin, N. P. Xu, J.M. Ahn,
Journal of Power Sources, 180, 15-22, 2008.
[43] S. M. Haile, Acta Materialia, 51, 5981, 2003
[44] J. I. Jung, Doreen D. Edwards, Journal of Solid State Chemistry,
[45] C. T. Wu, National Cheng Kung University, 184, 2238-2243, 2003.
[46] J. M. Serra, V. B. Vert, M. Betz, V. A. C. Haanappel, W. A.
Meulenberg, and F. Tietz, J. Electrochem. 155, 207-214, 2008,
[47] H. Patra, S. K. Rout, S. K. Pratihar, S. Bhattacharya, Powder
Technology, vol.209, 98-104, 2011.
[48] S. Liu1, M. Liu, Z. Shao, J. C. D. Costa1, Z. P. Xu, Powder Technology,
90, 84-91, 2007.
[49] W. X. Zhong, “Co-precipitation Synthesis of La0.6Sr0.4Co0.2Fe0.8O3-δ-
Sm0.2Ce0.8O3-δ for IT-SOFC Composite Cathode”, National Taipei
University of Technology, 2009.
[50] W. Zhou, R. Ran, Z. P. Shao, H. X. Gu, W. Q. Jin, N. P. Xu,
Journal of Power Sources, 174, 2371-245, 2007
[51] W. Zhou, R. Ran, Z. P. Shao, Journal of Power Sources, 174, 231-246,
2009
指導教授 林景崎(J. C. Lin) 審核日期 2014-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明