博碩士論文 101329011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:52.14.130.13
姓名 任裕靖(Yu-jing Ren)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究
(The study of sintering ability, microstructure, and conductivity of Ba0.8Sr0.2Ce0.8-xyZryInxY0.2O3- δ(x=0.05,0.1 y=0,0.1) Solid oxide fuel cell electrolyte material)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究
★ 鐵基塊狀金屬玻璃熱塑成形性之研究★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究
★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究
★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究
★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製★ 低密度雙相富鋁高熵合金之微結構觀察與其機械性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究成功利用固相反應法製備Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,

0.1 y=0,0.1)粉體,由於BaCeO3 具有高質子導電率,釔及鍶之摻雜可以增

加導電率,鋯之摻雜可以增加化學穩定性,銦摻雜可以降低燒結溫度,非常

適合應用於P-SOFC 之電解質材料。銦之摻雜對於燒結能力有明顯的提升,

摻雜0.05 %收縮率增加了7 %,而且燒結溫度可以由1600 °C 下降至1450

°C,經由SEM 觀察其破斷面非常緻密。而導電率在800 °C 氫氣氣氛下可

達0.011 S/cm,達到目前商用的需求(0.01 S/cm)。並利用噴霧塗佈法來製備

陽極支撐型半電池,將含有NiO 及造孔劑之Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ 乾壓

成形,噴上電解質,共燒溫度為1450 °C,再塗佈白金作為陰極,進行電池

功率之量測。
摘要(英) Ba0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ(0.0≦x≦0.2) proton-conducting oxides

had been successfully prepared using a solid state reaction method. In this study,

the effect of indium contents on the microstructures, chemical stability, electrical

conductivity, and sintering ability of these Ba0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ oxides

were systemically studied by using X-ray diffraction (XRD), scanning electron

microscopy, and two point probe conductivity analysis. The XRD results showed

that no second phase could be resolved from the Ba0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ

oxides sintered at 1450 °C for 4 hr. Meanwhile, the SEM observation shows a

dense surface morphology for these oxides after sintering at 1450 °C for 4 hr. The

optimum conductivity can reach to 0.011 S/cm at 800 °C occurs at the oxide

composition of Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ. In addition, the chemical stability to

resist CO2 at 600 °C can be effectively improved by doping more than 0.1 at%

indium. Therefore, the Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ ceramic is suggested to be a

potential electrolyte material for P-SOFC applications. In addition, the anodesupported

half-cell was prepared by spray coating the Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-

δ electrolyte slurry on the anode pellet , and sintered at 1450 °C for 4 hour. Then

the sintered half-cell was coated with Pt paste as cathode for I-V curve testing.

Keywords: SOFC, sinterability, conductivity, chemical stability, electrolyte,

IndiumBa0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ(0.0≦x≦0.2) proton-conducting oxides

had been successfully prepared using a solid state reaction method. In this study,

the effect of indium contents on the microstructures, chemical stability, electrical

conductivity, and sintering ability of these Ba0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ oxides

were systemically studied by using X-ray diffraction (XRD), scanning electron

microscopy, and two point probe conductivity analysis. The XRD results showed

that no second phase could be resolved from the Ba0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ

oxides sintered at 1450 °C for 4 hr. Meanwhile, the SEM observation shows a

dense surface morphology for these oxides after sintering at 1450 °C for 4 hr. The

optimum conductivity can reach to 0.011 S/cm at 800 °C occurs at the oxide

composition of Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ. In addition, the chemical stability to

resist CO2 at 600 °C can be effectively improved by doping more than 0.1 at%

indium. Therefore, the Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ ceramic is suggested to be a

potential electrolyte material for P-SOFC applications. In addition, the anodesupported

half-cell was prepared by spray coating the Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-

δ electrolyte slurry on the anode pellet , and sintered at 1450 °C for 4 hour. Then

the sintered half-cell was coated with Pt paste as cathode for I-V curve testing.

Keywords: SOFC, sinterability, conductivity, chemical stability, electrolyte,

Indium
關鍵字(中) ★ 導電率
★ 化學穩定性
★ 電解質
★ 固態氧化物燃料電池
★ 銦摻雜
關鍵字(英) ★ SOFC
★ sinterability
★ conductivity
★ chemical stability
★ electrolyte
★ Indium doping
論文目次 摘要 .................................................................................................................... i

Abstract .............................................................................................................. ii

目錄 .................................................................................................................. iii

表目錄 ............................................................................................................. vii

圖目錄 ............................................................................................................. viii

第一章、前言 .................................................................................................... 1

1-1 緒論 .................................................................................................... 1

1-2 研究動機與目的 ................................................................................. 2

1-2-1 研究動機 ................................................................................. 2

1-2-2 研究目的 ................................................................................. 4

第二章、文獻回顧 ............................................................................................ 7

2-1 固態氧化物燃料電池 (Solid Oxide Fuel Cell, SOFC) ....................... 7

2-1-1 固態氧化物燃料電池的工作原理與機制 ............................... 7

2-1-2 固態氧化物燃料電池陽極材料 .............................................. 9

2-1-3 固態氧化物燃料電池電解質材料......................................... 12

2-1-4 固態氧化物燃料電池電解質材料之晶體結構 ..................... 12

2-1-4-1 螢石結構 (Fluorite structure) ............................................. 13

2-1-4-1-1 摻雜氧化鋯 (ZrO2) ......................................................... 13

2-1-4-1-2 摻雜氧化鈰 (CeO2) ........................................................ 13

2-1-4-2 鈣鈦礦結構 (Pervoskite structure ) .................................... 14

2-1-5 固態氧化物燃料電池陰極材料 ............................................ 14

2-2 粉末製備方法 ................................................................................... 17

2-2-1 固態反應法(SSR) .................................................................. 17

2-2-2 濕式化學法(Wet chemical methods) ...................................... 17

2-2-3 其他合成方法 ........................................................................ 17

2-3 BaCeO3 和BaZrO3 系統 .................................................................... 18

2-4 BaCeO3 摻雜稀土元素 ...................................................................... 19

2-5 BaCeO3 共摻雜不同元素 .................................................................. 21

第三章、實驗方法與步驟 .............................................................................. 28

3-1 粉體與試片製備 ............................................................................... 28

3-1-1 粉體的製備............................................................................ 28

3-1-2 坯體的製備............................................................................ 29

3-2 材料性質分析 ................................................................................... 30

3-2-1 X 光繞射分析 (XRD) ............................................................ 30

3-2-2 粉體粒徑量測 ........................................................................ 30

3-2-3 熱膨脹分析儀 (TDA) ........................................................... 31

3-2-4 收縮率量測 (Shrinkage) ....................................................... 31

3-2-5 掃描式電子顯微鏡分析 (SEM)............................................ 31

3-3 化學穩定性分析 ............................................................................... 32

3-4 導電率量測 ....................................................................................... 32

3-5 噴霧塗佈(Spray Coating) ................................................................. 33

3-5-1 陽極胚體製備 ........................................................................ 33

3-5-2 電解質漿料配製 .................................................................... 34

3-5-3 塗佈製程 ............................................................................... 34

第四章、結果與討論 ...................................................................................... 41

4-1 粉體粒徑分析 ................................................................................... 41

4-2 X 光繞射分析 .................................................................................... 41

4-3 熱膨脹分析 ....................................................................................... 42

4-4 SEM 破斷面分析 ............................................................................... 42

4-5 收縮率分析 ....................................................................................... 43

4-6 化學穩定性分析 ............................................................................... 44

4-7 導電率分析 ....................................................................................... 45

4-8 塗佈製程 .......................................................................................... 46

4-9 電解質I-V 性能測試 ....................................................................... 47

第五章、結論 .................................................................................................. 59

第六章、參考文獻 .......................................................................................... 61
參考文獻 [1] A.D. J. Larminie, “Fuel cell system explained ”, 2003.

[2] 黃鎮江, 燃料電池, vol. 3, 滄海書局, 2008.

[3] Murray EP, Tsai T, Barnett SA, “A direct-methane fuel cell with a ceriabased

anode”, Nature, vol. 400, pp. 649-651, 1999.

[4] Chan SH, Ho HK, Tian Y, “Multi-level modeling of SOFC-gas turbine

hybrid system”, Int J Hydrogen Energy, vol. 28, pp. 889-900, 2003.

[5] Haile SM, “Fuel cell materials and components”, Acta Marer, vol. 51,

pp.5981-6000, 2003.

[6] Z.P. Shao, S.M. Haile, Nature, vol. 431, pp. 170–173, 2004.

[7] W. Zhou, Z.P. Shao, R. Ran, R. Cui, Electrochem. Commun.

[8] T. Ishihara, J.W. Yan, M. Shinagawa, H. Matsumoto, Electrochim. Acta, vol.

52, pp. 1645–1650, 2006.

[9] Shao ZP, Haile SM, “A high-performance cathode for the next generation

of solid-oxide fuel cells”, Nature, vol. 431, 170-173, 2004.

[10] Yang L, Zuo CD, Wang SH, Cheng Z, Liu M, “A novel composite cathode

for low-temperature SOFCs based on oxide proton conductors”, Adv. Mater,

vol. 20, pp. 3280-3283, 2008.

[11] Tan WY, Zhong Q, Miao MS, Qu HX, “H2S Solid oxide fuel cell based on

a modified barium cerate perovskite proton conductor”, Ionics, vol. 15, pp.

385-388, 2009.

[12] K.D. Kreuer, Annu. Rev, Mater. Res, vol. 33, pp. 333–339, 2003. H. Yugami,

Y. Shibayama, T. Hattori, M. Ishigame, Solid State Ionics, vol. 79, pp. 171–

176, 1995.

[13] H. Yugami, Y. Shibayama, T. Hattori, M. Ishigame, Solid State Ionics, vol.

79, pp. 171–176, 1995.

[14] J.Guan,E.D. Stephen, B. Uthamalingam, M.L. Liu, Solid State Ionics,110,

pp. 303–310, 1998.

[15] K.D. Kreuer, "Proton-conducting oxides," Annual Review of Materials

Research”, vol. 33, pp.333-359, 2003.

[16] Takahashi T, Iwahara H. Solid–state ionics: protonic conduction in

perovskite type oxide solid solutions. Rev Chim Miner.1980;17(4):243–53

[17] Hoffmann A. Zeitschrift fuer Physikalische Chemie, Abteilung B:

Chemie der Elementarprozesse. Aufbau der Materie 1935;28:65–77.

[18] D. Medvedev , A. Murashkina , E. Pikalova , A. Demin , A. Podias ,P.

Tsiakaras, BaCeO3: Materials development, properties and application,

Progress in Materials Science, 60, 72–129, 2014.

[19] K.R. Lee , C.J. Tseng , J.K. Chang , I.M. Hung , J.C. Lin ,S.W. Lee,

Strontium doping effect on phase homogeneity and conductivity of Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ proton conducting oxides, International Journal of

Hydrogen Energy, Volume 38, Issue 25, 21 August 2013, Pages 11097-

11103.

[20] L. Bi, S.Q. Zhang, L. Zhang, Z.T. Tao, H.Q. Wang, W. Liu,Int. J. Hydrogen

Energy34 (2009) 2421-2425.

[21] F. Zhao, Q. Liu, S.W. Wang, K. Brinkman, F.L. Chen, Int.J. Hydrogen

Energy 35(2010) 4258-4263.

[22] N. Ito, H. Matsumoto, Y. Kawasaki, S. Okada, T. Ishihara,Solid State Ionics

179(2008) 324-329.

[23] S. Imashuku, T. Uda, Y. Nose, G. Taniguchi, Y. Ito, Y. Awakura, J.

Electrochem.Soc. 156 (1) (2009) B1-B8.

[24] Chunwen Sun, Ulrich Stimming, “Rwviw: Recent anode advancesin solid

oxide fuel cells”, Journal of Power Sources, vol. 171, pp. 247–260, 2007.

[25] S. Mclntosh, R.J. Gorte, Chem. Rev., vol. 104, pp. 4845–4865, 2004.

[26] Tao, Z., Bi, L., Zhu, Z., Liu W., “Novel cobalt-free cathode materials

BaCexFe1−xO3−δ for proton-conducting solid oxide fuel cells” Journal of

Power Sources, vol. 194, No. 2, pp. 801-804, 2009.

[27] KV Galloway and NM Sammes, “Fuel Cells – Solid Oxide Fuel Cells

Anodes”, Encyclopedia of Electrochemical Power Sources, pp. 17-24, 2009.

[28] H. Inaba and H. Tagawa, Ceria-based solid electrolytes, Solid State Ion.,

vol. 83, pp. 1-16, 1996

[29] C.W. Sun, J. Sun, G.L. Xiao, H.R. Zhang, X.P. Qiu, H. Li, L.Q. Chen, J.

Phys. Chem. B, vol. 110, pp. 13445–13452, 2006.

[30] N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov,

B.Johansson, Phys. Rev. Lett., vol. 89, 166601, 2002.

[31] N.M. Sammes, B.R. Roy,” FUEL CELLS – SOLID OXIDE FUEL CELLS

| Cathodes”, Encyclopedia of Electrochemical Power Sources, pp.25–33,

2009.

[32] E. Ivers-Tiffée, “Electrolytes | Solid :oxygen ions”, Encyclopedia of

Electrochemical Power Source, vol. , pp. 181-187, 2009.

[33] Amsif M, Marrero-López D, Magrasó A, Peña-Martínez J, Ruiz-Morales

JC, Núñez P. Synthesis and characterization of BaCeO3-based proton

conductors obtained from freeze-dried precursors. J Eur Ceram Soc,

2009;29(1):131–8.

[34] Amsif M, Marrero–Lopez D, Ruiz–Morales JC, Savvin SN, Gabás M,

Nunez P. Influence of rare-earth doping on themicrostructure and

conductivity of BaCe0.9Ln0.1O3-δ proton conductors. J Power

Sour ,2011;196(7):3461–9.

[35] Khani Z, Taillades–Jacquin M, Taillades G, Marrony M, Jones DJ, Rozière

J. New synthesis of nanopowders of protonconducting materials. A route to

densified proton ceramics. J Solid State Chem ,2009;182(4):790–8.

[36] Anselmi-Tamburini U, Buscaglia MT, Viviani M, Bassoli M, Bottino C,

Buscaglia V, et al. Solid-state synthesis and spark plasma sintering of

submicron BaYxZr1-xO3-x/2 (x = 0, 0.08 and 0.16) ceramics. J Eur Ceram

Soc ,2006;26(12):2313–8.

[37] Stuart PA, Unno T, Ayres–Rocha R, Djurado E, Skinner SJ. The synthesis

and sintering behaviour of BaZr0.9Y0.1O3-δ powders prepared by spray

pyrolysis. J Eur Ceram Soc, 2009;29(4):697–702.

[38] Gdula-Kasica K, Mielewczyk-Gryn A, Molin S, Jasinski P, Krupa A, Kusz

B, et al. Optimization of microstructure andproperties of acceptor-doped

barium cerate. Solid State Ionics, 2012;225:245–9.

[39] Kreuer KD. Aspects of the formation and mobility of protonic charge

carriers and the stability of perovskite-type oxides. Solid State

Ionics ,1999;125(4):285–302.

[40] Bonanos N, Knight KS, Ellis B. Perovskite solid electrolytes: structure,

transport properties and fuel cell applications. Solid State

Ionics ,1995;79:161–70.

[41] Medvedev DA, Gorbova EV, Demin AK, Antonov BD. Structure and

electric properties of BaCe0.77-xZrxGd0.2Cu0.03O3-δ. Rus

JElectrochem ,2011;47(12):1404–10.

[42] Lu J, Wang L, Fan L, Li Y, Dai L, Guo H. Chemical stability of doped

BaCeO3–BaZrO3 solid solutions in different atmospheres.J Rare

Earth ,2008;26(4):505–10.

[43] Fabbri E, D’Epifanio A, Bartolomeo ED, Licoccia S, Traversa E. Tailoring

the chemical stability of Ba(Ce0.8-xZrx)Y0.2O3-δprotonic conductors for

intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State

Ionics, 2008;179(15–16):558–64.

[44] Lv J, Wang L, Lei D, Guo H, Kumar RV. Sintering, chemical stability and

electrical conductivity of the perovskite protonconductors

BaCe0.45Zr0.45M0.1O3-δ (M = In, Y, Gd, Sm). J Alloys Compd ,2009;476(1–

2):376–82.

[45] Zaja˛ca W, Hanc E, Gorzkowska–Sobas A, S´ wierczek K, Molenda J. Nddoped

Ba(Ce,Zr)O3-δ proton conductors for application in conversion of

CO2 into liquid fuels. Solid State Ionics ,2012;225:297–303.

[46] Zhan SJ, Zhu XF, Wang WP, Yang WS. Stability and transport conductivity

of perovskite type BaZrxCe0.8-xNd0.2O3-δ. Adv Mater Res 2012;554–

556:404–7.

[47] Ricote S, Bonanos N, Manerbino A, Coors WG. Conductivity study of

dense BaCexZr(0.9-x)Y0.1O(3-δ) prepared by solid state reactive sintering at

1500 °C. Int J Hydrogen Energy, 2012;27(9):7954–61.

[48] Sawant P, Varma S, Wani BN, Bharadwaj SR. Synthesis, stability and

conductivity of BaCe0.8-xZrxY0.2O3-δas electrolyte for proton conducting

SOFC. Int J Hydrogen Energy ,2012;37(4):3848–56.

[49] Malavasi L, Fisher CAJ, Saiful Islam M. Oxide-ion and proton conducting

electrolyte materials for clean energy applications: structural and

mechanistic features. Chem Soc Rev ,2010;39:4370–87

[50] Wang M-Y, Qi L-G. Mixed conduction in BaCe0.8Pr0.2O3-δ ceramic. Chin

J Chem Phys ,2008;21(3):286–90.

[51] Sharova NV, Gorelov VP. Characteristics of proton-conducting electrolytes

BaCe1-xNdxO3-δ (0 6
2005;41(9):1001–7.

[52] Gorbova E, Maragou V, Medvedev D, Demin A, Tsiakaras P. Investigation

of the protonic conduction in Sm-doped BaCeO3.J Power

Sour ,2008;181(2):207–13.

[53] Maffei N, Pelletier L, Charland JP, McFarlan A. An ammonia fuel cell using

a mixed ionic and electronic conducting electrolyte. J Power Sour,

2006;162:165–7.

[54] Chen C, Ma G. Proton conduction in BaCe1-xGdxO3-δ at intermediate

temperature and its application to synthesis of ammonia at atmospheric

pressure. J Alloys Compd ,2009;485(1–2):69–72.

[55] Matskevich NI, Wolf TA. The enthalpies of formation of BaCe1-xRexO3-δ

(Re = Eu, Tb, Gd). J Chem Thermod,2010;42(2):225–8.

[56] Wang WB, Liu JW, Li YD, Wang HT, Zhang F, Ma GL. Microstructures

and proton conduction behaviors of Dy-doped BaCeO3 ceramics at

intermediate temperature. Solid State Ionics ,2010;181(15–16):667–71.

[57] Wang M-Y, Qiu L-G, Ma G-L. Ionic conduction in Ba0.95Ce0.8Ho0.2O3-α.

Chin J Chem, 2007;25(9):1273–7.

[58] Yin J, Wang X, Xu J, Wang H, Zhang F, Ma G. Ionic conduction in BaCe0.85-

xZrxEr0.15O3-α and its application to ammonia synthesis at atmospheric

pressure. Solid State Ionics, 2011;185(1):6–10.

[59] Qiu L-G, Wang M-Y. Ionic conduction and fuel cell performance of

Ba0.98Ce0.8Tm0.2O3 ceramic. Chin J Chem Phys,2010;23(6):707–12

[60] Matskevich NI, Wolf T, Matskevich MYu, Chupakhina TI. Preparation,

stability and thermodynamic properties of Nd- andm Lu-doped BaCeO3

proton-conducting ceramics. Eur J Inorg Chem ,2009;11:1477–82.

[61] Norby T, Widerøe M, Glockner R, Larring Y. Hydrogen in oxides. Dalton

Trans, 2004;19:3012–8.

[62] Kreuer KD. Proton-conducting oxide. Annu Rev Mater Res ,2003;33:333–

59.

[63] Kilner JA. Fast oxygen transport in acceptor doped oxides. Solid State

Ionics ,2000;129(1–4):13–23.

[64] Yashiro K, Suzuki T, Kaimai A, Matsumoto H, Nigara Y, Kawada T, et al.

Electrical properties and defect structure of niobiadoped ceria. Solid State

Ionics, 2004;175(1–4):341–4

[65] Zhao F, Chen F. Performance of solid oxide fuel cells based on protonconducting

BaCe0.7In0.3-xYxO3-δ electrolyte. Int J Hydrogen

Energy ,2010;35(20):11194–9.

[66] Matskevich NI. Enthalpy of formation of BaCe0.9In0.1O3-δ. J Therm Anal

Calorim, 2007;90(3):955–8.

[67] Bi L, Zhang SQ, Zhang L, Tao ZT, Wang HQ, Liu W. Indium as an ideal

functional dopant for a proton-conducting solid oxide fuel cell. Int J

Hydrogen Energy, 2009;34(5):2421–5.

[68] Zhang C, Zhao H. Influence of In content on the electrical conduction

behavior of Sm- and In-co-doped proton conductor BaCe0.80-xSm0.20InxO3-

δ. Solid State Ionics ,2012;206(5):17–21.

[69] Zhang C, Zhao H. Electrical conduction behavior of Sr substituted proton

conductor Ba1-xSrxCe0.9Nd0.1O3-δ. Solid State Ionics ,2010;181(33–

34):1478–85.

[70] Shijing Zhan, Xuefeng Zhu, Baofeng Ji, Weiping Wang, Xiao liang Zhanga,

JiboWang, Wei shen Yang, Li wu Lin, “Preparation and hydrogen

permeation of SrCe0.95Y0.05O3-δ asymmetrical membranes”, Journal of

Membrane Science, vol. 340, pp. 241-248, 2009.

[71] Xiao tong Wei, Y.S. Lin, “Protonic and electronic conductivities of terbium

doped strontium cerates”, Solid State Ionics, vol. 178, pp. 1804–1810, 2008.

[72] Fei Zhao , Qiang Liu , Siwei Wang, Kyle Brinkman , Fanglin Chen ,

Synthesis and characterization of BaIn0.3-xYxCe0.7O3-δ(x =0, 0.1, 0.2, 0.3)

proton conductors, j o u r n a l o f hydrogen energy ,3 2 0 1 0 )4 2 5 8 –

4 2 6 3.

[73] Xiao tong Wei, Jay Kniep, Y.S. Lin., “Hydrogen permeation through

terbium doped strontium cerate membranes enabled by presence of

reducing gas in the downstream”, Journal of Membrane Science, vol. 345,

pp. 201-206, 2009.
指導教授 鄭憲清(Shian-ching Jang) 審核日期 2014-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明