博碩士論文 101329014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.208.186.19
姓名 林芳竹(Fang-chu Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 週期性銀奈米粒子陣列於折射率感測之應用
(Refractive index chemical sensing with periodic silver nanoparticle arrays)
相關論文
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
★ 利用新穎方法製作鋁背表面電場應用於結晶矽太陽能電池★ 旋轉塗佈摻雜溶液之擴散製程探討及其應用 於製備太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了探討金屬奈米粒子尺寸變化對環境折射率敏感度之影響,我們以陽極氧化鋁模
板製作不同尺寸之金屬奈米粒子,相對於傳統的微影製程,陽極氧化鋁模板製作方式較為簡便且花費較少,並提供了一個相當大的尺寸範圍。
本研究以1.08 vol. % 磷酸為電解液對鋁片施以185 伏特之偏壓進行陽極處理,以得到具週期性孔洞之陽極氧化鋁模板,其孔洞直徑約為110 nm, 孔洞間距約為470 nm,另外,可藉由化學蝕刻方式將孔洞直徑從110 nm 擴大至360 nm。我們利用不同孔洞直徑之陽極氧化鋁模板製作出週期性皆為470 nm,直徑分別為105, 187 及274 nm 以及高度為48, 100 及176 nm 的銀奈米粒子陣列,並對其光學性質的變化進行探討。隨著銀奈米粒子直徑的增加,表面電漿波長位置會有紅位移的現象,而高度增加則會出現藍位移現象。
在折射率敏感度的量測上可發現銀奈米粒子的直徑變化幾乎對折射率敏感度不具影響,而在直徑相同時,高度越小則具有較佳的折射率敏感度。另外在銀粒子直徑為187nm,高為176 nm 時的兩種共振波,dipole 與quadrupole 共振波,對於折射率敏感度並不相同,分別為252 nm/RIU 及354 nm/RIU,可發現在我們系統中quadrupole 共振波擁有較好的折射率敏感度,且相對於粒子直徑為187 nm,高為48 nm 的折射率敏感度 (321nm/RIU),雖然高度變高時dipole 共振波的折射率敏感度變差,但quadrupole 共振波的出現提供了一個比dipole 共振波更為靈敏的感測波。
摘要(英) To characterize the index sensitivities of Ag nanoparticles of various sizes, we fabricate periodic silver nanoparticle arrays on glass substrate with different size. Compared with
e-beam lithography, anodic aluminum oxide lithography is a low cost and simple method. In this study, anodic aluminum oxide which has 110 nm pore diameter and 470 nm interpore distance was prepared in 1.08 vol. % phosphoric acid solution at 185 V. Moreover, pore diameter can be widened by chemical etching. Periodic silver nanoparticle arrays with
different diameter (105, 187, 274 nm) and height (48, 100, 176 nm) were prepared by vapor deposition using anodic aluminum oxide template as a mask.
The optical properties of such silver arrays were examined, Their surface plasmon resonance peaks generally red-shift as the diameter of silver particles is increased, on the other hand, their surface plasmon resonance peaks generally blue-shift as the height of silver particles is increased. While the periodic silver nanoparticle arrays with 187 nm diameter and 180 nm, the electric field leading to plasmon mode hybridization with the appearance of two new bands: dipole resonance and quadrupolar. The refractive index sensitivity of periodic silver nanoparticle arrays shows that the diameter only have a weak effect within the investigated range (105-274 nm), but as the height of silver particles is 48 nm has a better refractive index sensitivity than 180 nm. We found that quadrupole resonance has the best refractive index sensitivity (354 nm), it is due to dipole near the substrate and quadrupolar away from the substrate.
關鍵字(中) ★ 週期性銀奈米粒子陣列
★ 陽極氧化鋁微影
★ 折射率敏感度
關鍵字(英) ★ Periodic silver nanoparticle arrays
★ anodic aluminum oxide lithography
★ refractive index sensitivity
論文目次 目錄
摘要.............................................................................................................................................i
Abstract .....................................................................................................................................ii
致謝...........................................................................................................................................iii
目錄...........................................................................................................................................iv
圖目錄.......................................................................................................................................vi
表目綠.....................................................................................................................................viii
第一章緒論................................................................................................................................1
1-1 前言.............................................................................................................................1
第二章文獻回顧與基礎理論....................................................................................................3
2-1 金屬膜表面電漿子共振原理.....................................................................................3
2-2 金屬奈米粒子侷域性表面電漿共振現象.................................................................4
2-3 金屬奈米粒子之製備..................................................................................................5
2-3-1 自組裝單分子層(Self-assembly monolayer)..................................................6
2-3-2 奈米球微影 (Nanosphere lithography ) ..........................................................7
2-3-3 奈米壓印微影 (Nanoimprint lithography)....................................................10
2-3-3 陽極氧化鋁微影 (Anodic aluminum oxidelithography)............................... 11
2.4 金屬奈米粒子侷域表面電漿子共振特性於感測器之應用...................................12
2-5 陽極氧化鋁................................................................................................................13
2-5-1 陽極氧化鋁成長機制 ....................................................................................14
2-5-2 影響陽極氧化鋁成長之參數 ........................................................................16
第三章實驗流程及研究方法..................................................................................................19
3-1 實驗流程...................................................................................................................19
3-2 實驗藥品及材料.......................................................................................................19
3-3 實驗設備...................................................................................................................20
3-4 實驗步驟...................................................................................................................20
3-4-1 陽極氧化鋁模板之製備 ................................................................................20
3-2-2 週期性銀奈米粒子之製備 ...........................................................................23
3-2-3 週期性銀奈米粒子之光學性質量測 ...........................................................23
3-2-4 以靜電球體理論預測表面電漿共振波長之位置 .......................................24
第四章結果與討論..................................................................................................................25
4-1 陽極氧化鋁模板........................................................................................................25
4-1-1 擴孔時間與孔洞直徑 ...................................................................................25
4-2 銀奈米陣列於基板的沉積........................................................................................26
4-2-1 不同直徑之銀奈米粒子陣列 ........................................................................26
4-2-2 不同厚度之銀奈米粒子陣列 .......................................................................28
4-3 銀奈米粒子陣列之光學性質....................................................................................29
4-3-1 不同直徑之銀奈米粒子陣列 .......................................................................29
4-3-2 不同高度之銀奈米粒子陣列 .......................................................................30v
4-4 1 銀奈米粒子陣列之折射率敏感度........................................................................31
4-3-1 不同直徑之銀奈米粒子陣列 .......................................................................31
4-3-2 不同高度之銀奈米粒子陣列 .......................................................................33
第五章結論..............................................................................................................................37
參考文獻..................................................................................................................................38
參考文獻 [1] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne, Nat. Mater.,
vol. 7, pp. 442 (2008)
[2] N. Nath and A. Chilkoti, Anal. Chem., vol. 76, pp. 5370 (2004)
[3] N. A. Luechinger, S. Loher, E. K. Athanassiou, R. N. Grass, and W. J. Stark, The
American Physical Society, vol. 78, pp. 1667 (1997)
[4] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. vol. 101, pp. 093105
(2007)
[5] L. M. Liz-Marz n and I. Lado-Touriño, Langmuir, vol. 12, pp. 3585 (1996)
[6] H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, and G. Q.
Xu, Langmuir, vol. 12, pp. 909 (1996)
[7] Y. Yang, S Matsubara, L. Xiong, T. Hayakawa, andM. Nogami, J. Phys. Chem. C vol. 111,
pp. 9095 (2007)
[8] A. M. Morales, C. M. Lieber, Science, vol. 279, pp. 208 (1998)
[9] H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, Langmuir, vol. 24, pp. 5233 ( 2008)
[10] T. Okamoto and I. Yamaguchi, Optics letters, vol. 25, pp. 372 (2000)
[11] J. Yuan, A. Hajebifard, C. George, P. Berini, S. Zou, J. Colloid Interface Sci, vol. 410, pp.
1 (2013)
[12] J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A, vol. 13, pp.1553, (1995)
[13] P. Hanarp, M. Käll, and D. S. Sutherland, J. Phys. Chem. B, vol. 107, pp. 5768, (2003)
[14] Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, J. Appl. Phys. vol. 103,
pp. 014308 (2008)
[15] K. Lhoste, L. Malaquin, L. Billot, A. M. Haghiri-Gosnet, Y. Chen, Microelectron. Eng.,
vol. 88, pp. 2474 (2011)
[16] S.-W. Lee, K.-S. Lee, J. Ahn, J.-J. Lee, M.-G. Kim, and Y.-B. Shin, ACSNano, vol. 5, pp.
897 (2011)
[17] M. S. Sander, L. S. Tan, Adv. Funct. Mater., vol. 13, pp. 393 (2003)
[18] A. Eftekhari, Nanostructured Materials in Electrochemistry, Wiley, New York, 2008.
[19] R. W. Wood, Proc. Phys. Soc. London vol. 18, pp. 269 (1902)
[20] E. A. Stern, R. A. Ferrell, vol. 120, pp.130 (1960)
[21] K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem., vol. 58 pp. 267 (2007)
[22] A. V. Zayats and I. I. Smolyaninov, J. Opt. A: Pure Appl. Opt. vol. 5, pp. S1 (2003)
[23] E. Kretschmann, H. Raether, Z. Naturforsch., A, vol. 23, pp. 2135 (1968)
47
[24] A. Otto, A. Physik., vol. 216, pp. (1968)
[25] C. Nylander, B. Liedberg, T. Lind, Sens. Actuators, vol. 3, pp. 79 (1982)
[26] B. Liedberg, C. Nylander, I. Lundstrom, Sens. Actuators, vol. 4, pp. 29930 (1983)
[27] Y. Yin, Y. Lu, B. Gates, and Y. Xia, J. Am. Chem. Soc., vol. 123, pp. 8718 (2001)
[28] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. vol. 67, pp. 3114 (1995)
[29] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B, vol. 14, pp. 4129
(1996)
[30] H. Masuda and M. Satoh, Jpn. J. Appl. Phys., vol. 35, pp. L126 (1996)
[31] Y. Lei, W. Cai, G. Wilde, Prog. Mater Sci., vol. 52, pp. 465 (2007)
[32] Y. Lei, and W.-K. Chim, Chem. Mater., vol. 17, pp. 580 (2005)
[34] R. J. Tonucci, B. L. Justus, A. J. Campillo, and C. E. Ford, Science, vol. 258, pp. 783
(1992)
[35] T. W. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, Science, vol. 261, pp, 1316
(1993)
[36] G. E. Thompson, Thin solid films, vol. 297, pp. 192 (1997)
[37] O. Jessensky, F. Műller, U. Gősele, Appl. Phys. Lett., vol. 72, pp. 1173 (1998)
[38] G. E. Thompson and G. C. Wood, In Treatise on Materials Science and Technology, (ed.
J.C. Scully), Academic Press New York, vol. 23, pp. 205 (1983)
[38] Y. Kanamori, K. Hane, H. Sai and H. Yugami, Appl. Phys. Lett., vol. 78, pp. 142 (2001)
[40] H. J. Her, J. M. Kim and J. Kim, Proceedings of the 2nd IEEE International Conference
on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007, art. no. 4160438,
788.
[41] J. M. Moon, A. Wei, J. Phys. Chem. B, vol. 109, pp. 23336 (2005)
[42] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B, vol. 107, pp.
668 (2003)
[43] S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, Nano Lett. vol. 11, pp. 1657
(2011)
指導教授 陳一塵(I-chen Chen) 審核日期 2014-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明