博碩士論文 101329017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.223.196.59
姓名 楊智傑(Jhih-jie Yang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 製備氧化鋅/鐵酸鋅層次級奈米結構與其本質催化性質之研究
(Fabrication of ZnO/ZnFe2O4 hierarchical nanostructures with improved intrinsic peroxidase-like activity)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來鐵酸鋅被發現具有類似過氧化酶催化活性 (peroxidase activity),可將過氧化氫分解為氫氧自由基。過氧化氫通常會在有機物分解過程中產生,例如葡萄糖可被葡萄糖氧化酶 (GOx) 氧化為葡萄糖酸以及過氧化氫。由於鐵酸鋅有優異的本質過氧化酶活性,且於大多催化反應中具有良好的抗腐蝕能力以及結構穩定性,因此鐵酸鋅相當有潛力可應用於葡萄糖檢測及染料降解。由於鐵酸鋅的本質催化活性與其形貌及維結構有關,降低材料維度可有效地增加比表面積,因此能顯著的提升其催化性質。
本研究中共分兩大方向去提升鐵酸鋅催化活性。首先我們結合靜電紡絲技術與溶膠凝膠法製備氧化鋅/鐵酸鋅玉米穗棒狀奈米複合材料,鐵酸鋅奈米顆粒源自金屬鹽類前驅液中的Fe(OH)3晶核熱分解。由於鐵酸鋅奈米顆粒可提供額外的反應面積,故展現出優異的催化活性與葡萄糖檢測能力。
第二部分則是利用選擇性蝕刻方式製備氧化鋅/鐵酸鋅介孔複合奈米纖維。於SEM影像中顯示在經過化學蝕刻後的樣品表面出現許多微小孔洞,這些孔洞性質可藉由氮氣吸附-脫附儀分析,結果顯示蝕刻過後可將比表面積由30.1 m2/g 增加至38.3 m2/g,平均孔洞直徑由7.9 nm增加至12.2 nm,總孔洞體積由0.082 cm3/g增加至0.157 cm3/g。綜合SEM、XRD、BET及BJH量測結果顯示選擇性蝕刻能有效提升複合奈米纖維比表面積以及孔洞體積。由於蝕刻後的複合奈米纖維具有較大的比表面積,因此展現出較優異的催化活性。
摘要(英) Recently, extensive research has shown that zinc ferrite possessed intrinsic peroxidase-like activity and it can catalyze H2O2 into hydroxyl radical. It is known that H2O2 is the main product of the glucose oxidase (GOx)-catalyzed reaction. Since it can be catalyzed by ZnFe2O4 to produce the color signal, the colorimetric detection of glucose can be realized. The peroxidase-like activity of zinc ferrite is strongly dependent on its morphology and microstructure. Thus, reducing the dimension of material can effectively enhance the catalytic ability.
This thesis contains two sections. First, we combined the electrospinning technique and sol gel method to fabricate ZnO/ZnFe2O4 composite nanocobs. The appearance of zinc ferrite NPs is due to the decomposed Fe(OH)3 nuclei in the metal salt precursor at annealing processes. Because zinc ferrite NPs can provide extra surface area, it possesses outstanding catalytic ability of glucose detection and degradation of dye.
Second, we utilized the selective etching method to fabricate mesoporous composite nanofiber. SEM images showed that a large number of mesopoles appeared at the surface after etching. The structural information of the etched sample were obtained by BET and BJH. The measurement results presented that the surface area, average pore diameter and total pore volume of the sample after etching were increased from 30.1 to 38.3 m2/g, 7.9 to 12.2 nm and 0.082 to 0.157 cm3/g, respectively. In summary, the result of SEM, XRD, BET and BJH indicated that the selective etching is an effective method to fabricate mesoporous nanofiber. Owing to the larger surface area, the sample after etching shows a better intrinsic peroxidase-like activity.
關鍵字(中) ★ 鐵酸鋅
★ 靜電紡絲
★ 選擇性蝕刻
★ 過氧化氫酶物質
關鍵字(英) ★ zinc ferrite
★ electrospinning
★ selective etching
★ peroxidase mimic
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1鐵酸鋅材料介紹 1
1.2製備鐵酸鋅奈米結構 2
1.2.1模板輔助法 (Template assisted method) 4
1.2.2靜電紡絲法 (Electrospinning) 5
1.3鐵酸鋅奈米纖維應用領域 6
1.3.1電磁波吸收材料 6
1.3.2 鋰電池陽極材料 7
1.3.3光催化 8
1.3.4葡萄糖感測 9
第二章 分析儀器與實驗方法 10
2.1實驗藥品 10
2.2實驗流程 11
2.3實驗儀器 13
2.3.1靜電紡絲實驗機 (Nanofiber Electrospinning Unit) 13
2.3.2管型爐 (Tube Furnace) 14
2.3.3掃描式電子顯微鏡 (Scanning Electron Microscopy) 14
2.3.4 X光粉末繞射儀 (X-ray Diffraction) 14
2.3.5穿透式電子顯微鏡 (Transmission Electron Microscopy) 15
2.3.6氮氣等溫吸脫附儀 (N2 adsorption/desorption isotherm, ASAP2020) 15
2.3.7可見光/紫外光光譜儀 (UV/Visible Spectrometers) 16
第三章 製備氧化鋅/鐵酸鋅玉米穗棒狀複合纖維應用於葡萄糖檢測及有機染料降解 17
3.1 研究動機 17
3.2 實驗步驟 20
3.2.1金屬鹽類前驅液配製 20
3.2.2靜電紡絲 20
3.2.3退火 21
3.2.4利用類過氧化酶活性降解有機染料 21
3.2.5葡萄糖檢測 22
3.3 實驗結果與討論 23
3.3.1靜電紡絲操作參數優化 23
3.3.3 XRD相鑑定分析 31
3.3.3 TEM微結構分析 32
3.3.4氧化鋅/鐵酸鋅玉米穗棒狀複合纖維成長機制探討 34
3.3.5鐵酸鋅/氧化鋅奈米纖維降解有機染料之特性 36
3.3.6葡萄糖感測性質量測 41
3.4結論 44
第四章 利用選擇性蝕刻法製備氧化鋅/鐵酸鋅介孔奈米纖維應用於葡萄糖檢測及有機染料降解 45
4.1 研究動機 45
4.2實驗步驟 46
4.2.1利用選擇性蝕刻方式製備介孔奈米纖維 (M0.5/NaOH) 46
4.2.2利用類過氧化酶活性降解有機染料 46
4.2.3葡萄糖檢測 46
4.3實驗結果與討論 47
4.3.1 SEM表面形貌分析 47
4.3.2 XRD相鑑定分析 48
4.3.3 BET比表面積及BJH孔徑分析 49
4.3.4有機染料降解之特性 52
4.3.5葡萄糖感測性質量測 56
4.4結論 59
第五章 總結 60
第六章 未來研究 61
參考文獻 63
參考文獻 [1] A. Kalendova, D. Veselý, J. Brodinova, "Anticorrosive spinel-type pigments of the
mixed metal oxides compared to metal polyphosphates," Anti-Corrosion Methods and Materials, vol. 51 (2004) pp. 6-17.
[2] C. H. Kim, Y. Myung, Y. J. Cho, H.S. Kim, S. H. Park, J. Park, J. Y. Kim, B. Kim, "Electronic Structure of Vertically Aligned Mn-Doped CoFe2O4 Nanowires and Their Application as Humidity Sensors and Photodetectors," The Journal of Physical Chemistry C, vol. 113 (2009) pp. 7085-7090.
[3] Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi, R. Xiong, "Electronic structure studies of the spinel CoFe2O4 by X-ray photoelectron spectroscopy," Applied Surface Science, vol. 254 (2008) pp. 6972-6975.
[4] S. Xuan, F. Wang, J. M. Y. Lai, K.W. Y. Sham, Y. X. J. Wang, S. F. Lee, J. C. Yu, C.H.K. Cheng, K.C.-F. Leung, "Synthesis of Biocompatible, Mesoporous Fe3O4 Nano/Microspheres with Large Surface Area for Magnetic Resonance Imaging and Therapeutic Applications," ACS Applied Materials & Interfaces, vol. 3 (2011) pp. 237-244.
[5] W. Pon-On, N. Charoenphandhu, I. M. Tang, P. Jongwattanapisan, N. Krishnamra, R. Hoonsawat, "Encapsulation of magnetic CoFe2O4 in SiO2 nanocomposites using hydroxyapatite as templates: A drug delivery system," Materials Chemistry and Physics, vol. 131 (2011) pp. 485-494.
[6] F. Liu, X. Li, Q. Zhao, Y. Hou, X. Quan, G. Chen, "Structural and photovoltaic properties of highly ordered ZnFe2O4 nanotube arrays fabricated by a facile sol–gel template method," Acta Materialia, vol. 57 (2009) pp. 2684-2690.
[7] P. P. Hankare, R. P. Patil, A.V. Jadhav, K. M. Garadkar, R. Sasikala, "Enhanced photocatalytic degradation of methyl red and thymol blue using titania–alumina–zinc ferrite nanocomposite," Applied Catalysis B: Environmental, vol. 107 (2011) pp. 333-339.
[8] X. Li, Y. Hou, Q. Zhao, L. Wang, "A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation," Journal of Colloid and Interface Science, vol. 358 (2011) pp. 102-108.
[9] X. Liu, H. Zheng, Y. Li, W. Zhang, "Factors on the separation of photogenerated charges and the charge dynamics in oxide/ZnFe2O4 composites," Journal of Materials Chemistry C, vol. 1 (2013) pp. 329-337.
[10] J. Qiu, C. Wang, M. Gu, "Photocatalytic properties and optical absorption of zinc ferrite nanometer films," Materials Science and Engineering: B, vol. 112 (2004) pp. 1-4.
[11] M. Wang, Z. Ai, L. Zhang, "Generalized Preparation of Porous Nanocrystalline ZnFe2O4 Superstructures from Zinc Ferrioxalate Precursor and Its Superparamagnetic Property," The Journal of Physical Chemistry C, vol. 112 (2008) pp. 13163-13170.
[12] S. Nakashima, K. Fujita, K. Tanaka, K. Hirao, T. Yamamoto, I. Tanaka, "First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution," Physical Review B, vol. 75 (2007) pp. 174443.
[13] X. Shen, J. Xiang, F. Song, M. Liu, "Characterization and magnetic properties of electrospun Co1−xZnxFe2O4 nanofibers," Applied Physics A, vol. 99 (2010) pp. 189-195.
[14] Z. Xin, H. Zhi-Ling, L. Feng, Q. Xin, "Magnetic Properties of Ni-Zn Ferrite Prepared with the Layered Precursor Method," Chinese Physics Letters, vol. 27 (2010) pp. 117501.
[15] K. Nakata, A. Fujishima, "TiO2 photocatalysis: Design and applications," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 13 (2012) pp. 169-189.
[16] A. Yoffe, "Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems," Advances in Physics, vol. 42 (1993) pp. 173-262.
[17] J. Philip, G. Gnanaprakash, G. Panneerselvam, M. Antony, T. Jayakumar, B. Raj, "Effect of thermal annealing under vacuum on the crystal structure, size, and magnetic properties of ZnFe2O4 nanoparticles," Journal of Applied Physics, vol. 102 (2007) pp. 054305.
[18] X. Li, Y. Hou, Q. Zhao, W. Teng, X. Hu, G. Chen, "Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol," Chemosphere, vol. 82 (2011) pp. 581-586.
[19] H. Lv, L. Ma, P. Zeng, D. Ke, T. Peng, "Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light," Journal of Materials Chemistry, vol. 20 (2010) pp. 3665-3672.
[20] M. M. Rahman, S. B. Khan, M. Faisal, A. M. Asiri, K. A. Alamry, "Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods," Sensors and Actuators B: Chemical, vol. 171–172 (2012) pp. 932-937.
[21] M. Arias, V. M. Pantojas, O. Perales, W. Otaño, "Synthesis and characterization of magnetic diphase ZnFe2O4/γ-Fe2O3 electrospun fibers," Journal of Magnetism and Magnetic Materials, vol. 323 (2011) pp. 2109-2114.
[22] P. F. Teh, Y. Sharma, S. S. Pramana, M. Srinivasan, "Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries," Journal of Materials Chemistry, vol. 21 (2011) pp. 14999-15008.
[23] S. Liu, B. Yue, K. Jiao, Y. Zhou, H. He, "Template synthesis of one-dimensional nanostructured spinel zinc ferrite," Materials Letters, vol. 60 (2006) pp. 154-158.
[24] Y. Chen, D. Spoddig, M. Ziese, "Epitaxial thin film ZnFe2O4: a semi-transparent magnetic semiconductor with high Curie temperature," Journal of Physics D: Applied Physics, vol. 41 (2008) pp. 205004.
[25] L. Qin, Q. Zhu, G. Li, F. Liu, Q. Pan, "Controlled fabrication of flower-like ZnO-Fe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method," Journal of Materials Chemistry, vol. 22 (2012) pp. 7544-7550.
[26] X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, "Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods," Scientific reports, vol. 4 (2014) pp.
[27] D. Gao, Z. Shi, Y. Xu, J. Zhang, G. Yang, J. Zhang, X. Wang, D. Xue, "Synthesis, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays," Nanoscale research letters, vol. 5 (2010) pp. 1289-1294.
[28] D. H. Reneker, I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, vol. 7 (1996) pp. 216.
[29] A. Frenot, I.S. Chronakis, "Polymer nanofibers assembled by electrospinning," Current opinion in colloid & interface science, vol. 8 (2003) pp. 64-75.
[30] D. Li, Y. Xia, "Electrospinning of nanofibers: reinventing the wheel?," Advanced materials, vol. 16 (2004) pp. 1151-1170.
[31] D. Li, Y. Wang, Y. Xia, "Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays," Nano letters, vol. 3 (2003) pp. 1167-1171.
[32] D. Li, Y. Xia, "Fabrication of titania nanofibers by electrospinning," Nano Letters, vol. 3 (2003) pp. 555-560.
[33] D. Li, Y. Xia, "Direct Fabrication of Composite and Ceramic Hollow Nanofibers by
Electrospinning," Nano Letters, vol. 4 (2004) pp. 933-938.
[34] X. Peng, A.C. Santulli, E. Sutter, S.S. Wong, "Fabrication and enhanced photocatalytic activity of inorganic core-shell nanofibers produced by coaxial electrospinning," Chemical Science, vol. 3 (2012) pp. 1262-1272.
[35] J. Xie, Q. Wu, D. Zhao, "Electrospinning synthesis of ZnFe2O4/Fe3O4/Ag nanoparticle-loaded mesoporous carbon fibers with magnetic and photocatalytic properties," Carbon, vol. 50 (2012) pp. 800-807.
[36] R. Sharma, S. Singhal, "Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue," Physica B: Condensed Matter, vol. 414 (2013) pp. 83-90.
[37] A. Manikandan, L. J. Kennedy, M. Bououdina, J.J. Vijaya, "Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method," Journal of Magnetism and Magnetic Materials, vol. 349 (2014) pp. 249-258.
[38] K. Parekh, R. V. Upadhyay, L. Belova, K. Rao, "Ternary monodispersed Mn0.5Zn0.5Fe2O4 ferrite nanoparticles: preparation and magnetic characterization," Nanotechnology, vol. 17 (2006) pp. 5970.
[39] X. Huang, J. Zhang, S. Xiao, T. Sang, G. Chen, "Unique electromagnetic properties of the zinc ferrite nanofiber," Materials Letters, vol. 124 (2014) pp. 126-128.
[40] B. Guo, C. Li, Z. Y. Yuan, "Nanostructured Co3O4 materials: Synthesis, characterization, and electrochemical behaviors as anode reactants in rechargeable lithium ion batteries," The Journal of Physical Chemistry C, vol. 114 (2010) pp. 12805-12817.
[41] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, "Intrinsic peroxidase-like activity of ferromagnetic nanoparticles," Nature nanotechnology, vol. 2 (2007) pp. 577-583.
[42] M. Zhao, J. Huang, Y. Zhou, X. Pan, H. He, Z. Ye, X. Pan, "Controlled synthesis of spinel ZnFe2O4 decorated ZnO heterostructures as peroxidase mimetics for enhanced colorimetric biosensing," Chemical Communications, vol. 49 (2013) pp. 7656-7658.
[43] F. Mizutani, S. Yabuki, "Rapid determination of glucose and sucrose by an amperometric glucose-sensing electrode combined with an invertase/mutarotase attached measuring cell," Biosensors and Bioelectronics, vol. 12 (1997) pp. 1013-1020.
[44] C. Radhakumary, K. Sreenivasan, "Naked Eye Detection of Glucose in Urine Using Glucose Oxidase Immobilized Gold Nanoparticles," Analytical Chemistry, vol. 83 (2011) pp. 2829-2833.
[45] T. Urakami, J. Suzuki, A. Yoshida, H. Saito, H. Mugishima, "Incidence of children with slowly progressive form of type 1 diabetes detected by the urine glucose screening at schools in the Tokyo Metropolitan Area," Diabetes research and clinical practice, vol. 80 (2008) pp. 473-476.
[46] C. Bergemann, D. Müller-Schulte, J. Oster, L. à Brassard, A.S. Lübbe, "Magnetic ion-exchange nano- and microparticles for medical, biochemical and molecular biological applications," Journal of Magnetism and Magnetic Materials, vol. 194 (1999) pp. 45-52.
[47] A. Ito, E. Hibino, C. Kobayashi, H. Terasaki, H. Kagami, M. Ueda, T. Kobayashi, H. Honda, "Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force," Tissue engineering, vol. 11 (2005) pp. 489-496.
[48] X. Chen, X. Tian, B. Su, Z. Huang, X. Chen, M. Oyama, "Au nanoparticles on citrate-functionalized graphene nanosheets with a high peroxidase-like performance," Dalton Transactions, vol. 43 (2014) pp. 7449-7454.
[49] L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed, G. Xu, "Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection," Analytica Chimica Acta, vol. 762 (2013) pp. 83-86.
[50] Y. Chen, H. Cao, W. Shi, H. Liu, Y. Huang, "Fe-Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing," Chemical Communications, vol. 49 (2013) pp. 5013-5015.
[51] X. Cao, N. Wang, "A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays," Analyst, vol. 136 (2011) pp. 4241-4246.
[52] J. Mu, Y. Wang, M. Zhao, L. Zhang, "Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles," Chemical Communications, vol. 48 (2012) pp. 2540-2542.
[53] W. Chen, J. Chen, Y. B. Feng, L. Hong, Q. Y. Chen, L. F. Wu, X. H. Lin, X. H. Xia, "Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose," Analyst, vol. 137 (2012) pp. 1706-1712.
[54] A. Asati, S. Santra, C. Kaittanis, S. Nath, J. M. Perez, "Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles," Angewandte Chemie International Edition, vol. 48 (2009) pp. 2308-2312.
[55] R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze, R. Wever, H.C. Schröder, W.E.G. Müller, W. Tremel, "V2O5 Nanowires with an Intrinsic Peroxidase-Like Activity," Advanced Functional Materials, vol. 21 (2011) pp. 501-509.
[56] W. Luo, Y. S. Li, J. Yuan, L. Zhu, Z. Liu, H. Tang, S. Liu, "Ultrasensitive fluorometric determination of hydrogen peroxide and glucose by using multiferroic BiFeO3 nanoparticles as a catalyst," Talanta, vol. 81 (2010) pp. 901-907.
[57] W. Shi, X. Zhang, S. He, Y. Huang, "CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose," Chemical Communications, vol. 47 (2011) pp. 10785-10787.
[58] L. Su, J. Feng, X. Zhou, C. Ren, H. Li, X. Chen, "Colorimetric Detection of Urine Glucose Based ZnFe2O4 Magnetic Nanoparticles," Analytical Chemistry, vol. 84 (2012) pp. 5753-5758.
[59] N. Milić, P. Djurdjević, S. Niketić, "Effect of acetate and EDTA ligands on Hydrolysis of the Iron(III) Ion in sodium chloride medium," Zeitschrift für anorganische und allgemeine Chemie, vol. 571 (1989) pp. 174-180.
[60] M. Du, C. Xu, J. Sun, L. Gao, "Synthesis of [small alpha]-Fe2O3 nanoparticles from Fe(OH)3 sol and their composite with reduced graphene oxide for lithium ion batteries," Journal of Materials Chemistry A, vol. 1 (2013) pp. 7154-7158.
[61] H. Xiang, Y. Long, X. Yu, X. Zhang, N. Zhao, J. Xu, "A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning," CrystEngComm, vol. 13 (2011) pp. 4856-4860.
[62] J. Kong, S. Y. Wong, Y. Zhang, H. R. Tan, X. Li, X. Lu, "One-dimensional carbon-SnO2 and SnO2 nanostructuresvia single-spinneret electrospinning: tunable morphology and the underlying mechanism," Journal of Materials Chemistry, vol. 21 (2011) pp. 15928-15934.
[63] O. Lemine, "Effect of milling conditions on the formation of ZnFe2O4 nanocrystalline," International Journal of Physical Science, vol. 8 (2013) pp. 380-387.
[64] K. Chemizmu, R. Fentona, "Fenton reaction-controversy concerning the chemistry," Ecological chemistry and engineering, vol. 16 (2009) pp. 347-358.
[65] L. Sun, R. Shao, L. Tang, Z. Chen, "Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation," Journal of Alloys and Compounds, vol. 564 (2013) pp. 55-62.
[66] J. Lee, M.C. Orilall, S.C. Warren, M. Kamperman, F.J. DiSalvo, U. Wiesner, "Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores," Nature materials, vol. 7 (2008) pp. 222-228.
[67] Y. Hou, X. Li, Q. Zhao, G. Chen, "ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: Facile synthesis, improved activity and photocatalytic mechanism," Applied Catalysis B: Environmental, vol. 142–143 (2013) pp. 80-88.
[68] K. N. Chaudhari, N. K. Chaudhari, J. S. Yu, "Peroxidase mimic activity of hematite iron oxides (small alpha-Fe2O3) with different nanostructures," Catalysis Science & Technology, vol. 2 (2012) pp. 119-124.
[69] H. M. Chen, R. S. Liu, M. Y. Lo, S. C. Chang, L. D. Tsai, Y. M. Peng, J. F. Lee, "Hollow platinum spheres with nano-channels: synthesis and enhanced catalysis for oxygen reduction," The Journal of Physical Chemistry C, vol. 112 (2008) pp. 7522-7526.
[70] M. A. Woo, T. W. Kim, I. Y. Kim, S. J. Hwang, "Synthesis and lithium electrode application of ZnO−ZnFe2O4 nanocomposites and porously assembled ZnFe2O4 nanoparticles," Solid State Ionics, vol. 182 (2011) pp. 91-97.
[71] Y. Chen, H. Chen, L. Guo, Q. He, F. Chen, J. Zhou, J. Feng, J. Shi, "Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy," ACS Nano, vol. 4 (2009) pp. 529-539.
[72] N. Kumar, A. K. Srivastava, R. Nath, B. K. Gupta, G. D. Varma, "Probing the highly efficient room temperature ammonia gas sensing properties of a luminescent ZnO nanowire array prepared via an AAO-assisted template route," Dalton Transactions, vol. 43 (2014) pp. 5713-5720.
[73] J. B. Joo, Q. Zhang, M. Dahl, I. Lee, J. Goebl, F. Zaera, Y. Yin, "Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity," Energy & Environmental Science, vol. 5 (2012) pp. 6321-6327.
[74] K. J. McDonald, K. S. Choi, "Synthesis and Photoelectrochemical Properties of Fe2O3/ZnFe2O4 Composite Photoanodes for Use in Solar Water Oxidation," Chemistry of Materials, vol. 23 (2011) pp. 4863-4869.
[75] A. A. Tahir, K. G. U. Wijayantha, M. Mazhar, V. McKee, "ZnFe2O4 thin films from a single source precursor by aerosol assisted chemical vapour deposition," Thin Solid Films, vol. 518 (2010) pp. 3664-3668.
[76] N. Wang, L. Zhu, D. Wang, M. Wang, Z. Lin, H. Tang, "Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2, "Ultrasonics Sonochemistry, vol. 17 (2010) pp. 526-533.
[77] D. Porter, H. Bright, "The mechanism of oxidation of nitroalkanes by horseradish peroxidase," Journal of Biological Chemistry, vol. 258 (1983) pp. 9913-9924.
[78] X. X. Wang, Q. Wu, Z. Shan, Q. M. Huang, "BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection," Biosensors and Bioelectronics, vol. 26 (2011) pp. 3614-3619.
指導教授 李勝偉(Sheng-wei Lee) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明