博碩士論文 101329019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.137.222.67
姓名 郭品志(Pin-Zhi Kuo)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
(Effect of minor Zr and stabilizing annealing on the corrosion and mechanical properties of Al-4.7Mg-0.75Mn alloys)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響
★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響
★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響
★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究★ 固溶處理對Al-9.0Zn-2.3Mg-xCu合金機械性質與腐蝕性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 藉由微結構觀察、ASTM G67硝酸腐蝕重量損失測試及機械性質測試(硬度、拉伸),探討微量鋯與安定化退火對Al-4.7Mg-0.75Mn (AA5383)合金腐蝕與機械性質之影響,結果顯示,不論是否含微量鋯之Al-4.7Mg-0.75Mn合金,於220℃下進行安定化退火熱處理,合金均會發生沿晶腐蝕敏感現象;但當安定化退火溫度升高至250℃時,雖然合金之機械強度會下降,但均無沿晶腐蝕敏感問題;且經250℃安定化退火之含鋯合金機械性質(UTS=348MPa、YS=254MPa、EL=12.0%)優於經220℃安定化退火之未含鋯合金(UTS=337MPa、YS=250MPa、EL=9.5%),也就是說藉由微量鋯的添加與適當的安定化熱處理,可以獲得兼具良好抗蝕能力與機械性質之Al-4.7Mg-0.75Mn合金。
摘要(英) Effect of minor zirconium addition and stabilizing annealing on the corrosion and mechanical properties of Al-4.7Mg-0.75Mn alloys were studied by analysing the microstructure, mechanical properties and the Nitric Acid Mass Loss Test (NAMLT). The results indicated that the intergranular corrosion (IGC) occurred no matter Al-4.7Mg-0.75Mn alloys contains zirconium or not after stabilizing annealing at 220℃. However, it is non-IGC if raising the stabilizing annealing temperature to 250℃. Furthermore, the alloy contains zirconium with a stabilizing annealing at 250℃ has better mechanical properties (UTS=348MPa, YS=254MPa, EL=12.0%) than the alloy without zirconium which stabilizing annealing at 220℃(UTS=337MPa, YS=250MPa, EL=9.5%). The Al-4.7Mg-0.75Mn alloy with minor zirconium addition as well as a suitable stabilizing annealing heat treatment have both excellent corrosion resistance and mechanical properties in the same time.
關鍵字(中) ★ Al-4.7Mg-0.75Mn
★ 安定化退火
★ 微結構
★ 機械性質
★ 腐蝕性質
關鍵字(英) ★ Al-4.7Mg-0.75Mn
★ stabilizing annealing
★ microstructure
★ mechanical properties
★ corrosion resistance
論文目次 總目錄
中文摘要....................Ⅰ
英文摘要....................Ⅱ
謝誌.......................Ⅲ
總目錄.....................Ⅳ
表目錄....................Ⅶ
圖目錄...................Ⅷ

一、研究背景與文獻回顧........1
1.1 5000系鋁鎂合金簡介與研究背景.................1
1.2 鎂對5000系鋁鎂合金的影響…...................2
1.3 錳對5000系鋁鎂合金的影響.....................5
1.4 鈧與鋯對5000系鋁鎂鋁合金的影響.....................7
1.5 鋁鎂合金沿晶腐蝕機制…………………………………………..…9
1.6 影響5000系鋁鎂合金腐蝕性質之因素………………………...…10
1.6.1鎂含量對5000系鋁鎂合金腐蝕性質之影響…………………….10
1.6.2介金屬化合物對5000系鋁鎂合金腐蝕性質之影響…………….11
1.6.3冷加工量對5000系鋁鎂合金腐蝕性質之影響………………….12
1.6.4退火溫度對5000系鋁鎂合金腐蝕性質之影響…………………13
1.6.5 敏化溫度與時間對5000系鋁鎂合金腐蝕性質之影響…...........14
1.7 退火溫度對冷加工後5000系鋁鎂合金機械性質與微結構之影..16
1.8 析出物對非破壞性檢測之影響…………………………...………17
1.9實驗設計與目的……………………………………….……………18

二、實驗步驟與方法……………………………………………………20
2.1 合金熔配及成分分析…………………………………..………….20
2.2 均質化、輥軋、退火與敏化處理…………………………..……..21
2.2.1 均質化處理…………………………………..…………………..21
2.2.2 熱輥軋……………………………………..……………………..22
2.2.3 冷輥軋………………………………………………………...….22
2.2.4 H116製程………………………………………………………....22
2.3 微結構分析………………………………………………………...22
2.3.1 光學顯微鏡(Optical Microscopy)………………………………..22
2.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy)……………23
2.3.3 導電度量測(Electrical Conductivity, %IACS)……………..……24
2.4 機械性質分析………………………………………...……………25
2.4.1 硬度檢測(Hardness, RB)…………………………………..…….25
2.4.2 拉伸試驗(Tensile Test)………………………………….……….25
2.5 沿晶腐蝕性質分析(ASTM G67 Nitric Acid Mass Loss Test (NAMLT):沿晶腐蝕評估)…………………………….…….…………26
三、結果與討論…………………………………………………………28
3.1 微結構分析……………………………………………...…………28
3.1.1 晶粒組織…………………………………………………………28
3.1.2 安定化退火及敏化處理後之β相析出形貌…………….………33
3.1.3 導電度測試………………………………………………………41
3.2 機械性質分析…………………………………………..………….44
3.2.1 硬度測試………………………………………………..………..44
3.2.2 拉伸測試…………………………………………………………47
3.3腐蝕性質分析……………………………………………………….49
四、結論..........................................56
五、參考文獻.................................57






表目錄
表1.1 ASTM5383成分規範……………………………………………..2
表1.2 Al-6.8Mg合金經100℃加熱七天後之電阻值變化…………….13
表2.1 Al-4.7Mg-0.75Mn (AA5383)合金成分分析表(wt%)…………..20
表3.1 Al-4.7Mg-0.75Mn (AA5383)在各製程條件下之微結構
變化情形……………………..…………………………………33
表3.2 Al-4.7Mg-0.75Mn (AA5383)於各製程下之導電度(%IACS)….43
表3.3 Al-4.7Mg-0.75Mn (AA5383)於各製程下之硬度(RB)………….47
表3.4 Al-4.7Mg-0.75Mn (AA5383)經不同安定化退火,敏化前後之
拉伸性質…………………………………………………..……..49


圖目錄
圖1.1 鋁鎂合金二元相圖……………………………………………….4
圖1.2 添加鎂對退火純鋁板機械性質的影響………………………….4
圖1.3 錳含量不同對退火態鋁鎂合金機械性質之影響………….……6
圖1.4 以TEM觀察MnAl6於晶粒及晶界上散佈之情形…………….6
圖1.5 Al3Zr的L12結構示意圖,Al3Sc、Al3Zr兩者有相似結構……..7
圖1.6 SEM下觀察到之Al3Zr析出顆粒………………………………..8
圖1.7 鋁鎂合金中同時添加鈧鋯觀察到之Al3(ScxZr1-x)析出相………8
圖1.8 鋁鎂合金以及其它元素、介金屬化合物之還原電位………...11
圖1.9 AA5083鋁鎂合金經175℃加熱十天後之TEM顯微組織(a)bright-field image (b) the corresponding weak-beam image….13
圖1.10 (a)冷加工量50% (b)冷加工量50%經245℃退火12小時(c)冷加工量50%經320℃退火三小時之Al-6.8Mg合金敏化後β相析出型態……………………………………………………...…….14
圖1.11 AA5083-H116經不同溫度、時間敏化處理後之腐蝕性質…...15
圖1.12 低溫冷加工(浸泡於液態氮15分鐘後進行冷輥)之AA5083鋁鎂合金(a)退火溫度與硬度關係(b)經冷加工85%後,退火溫度與延伸率、強度關係………………………………………………..17
圖1.13 非破壞性檢測對AA7020於413K下時效時間之關係圖 (a)超音波檢測;(b)渦電流檢測………………………..………..18
圖2.1 金屬模具外觀…………………………………………….……..20
圖2.2 實驗流程……………………………………………..………….21
圖2.3 金相試片取樣位置………………………………...……………23
圖2.4 G67試片腐蝕形貌觀察取樣位置………………………………24
圖2.5 拉伸試片尺寸圖………………………………………...………25
圖2.6 拉伸試片與G67試片取樣方向………………………………..27
圖2.7 G67試片尺寸圖…………………………………...…………….27
圖3.1 Al-4.7Mg-0.75Mn (AA5383)鑄態之顯微結構:(a)A合金;(b)B(0.07Zr)合金……………………………………..………….28
圖3.2 Al-4.7Mg-0.75Mn (AA5383)經480℃×8hr均質化之顯微結構:
(a)A合金;(b)B(0.07Zr)合金……………………………..……..29
圖3.3 AA5383經450℃熱輥之顯微結構:(a)A合金; (b)B(0.07Zr)合金……………………………………...…………30
圖3.4 Al-4.7Mg-0.75Mn (AA5383)熱輥後經450℃×1hr退火之顯微結構:(a)A合金;(b)B(0.07Zr)合金……………………..………..30
圖3.5 Al-4.7Mg-0.75Mn (AA5383)冷輥之顯微結構:(a)A合金;(b)B(0.07Zr)合金……………………………………..………….31
圖3.6 Al-4.7Mg-0.75Mn (AA5383)冷輥後經220℃×4hr安定化退火之顯微結構:(a)A合金;(b)B(0.07Zr)合金……………………….32
圖3.7 Al-4.7Mg-0.75Mn (AA5383)冷輥後經250℃×4hr安定化退火之顯微結構:(a)A合金;(b)B(0.07Zr)合金…………………..…..32
圖3.8 Al-4.7Mg-0.75Mn (AA5383)冷輥材之β相析出形貌(OM): (a)A合金;(b)B(0.07Zr)合金…………………………………….34
圖3.9 Al-4.7Mg-0.75Mn (AA5383)冷輥材經220℃安定化退火4小時,敏化前之β相析出形貌(OM):(a)A合金;(b)B(0.07Zr)合金
……………………………………………………………………34
圖3.10 Al-4.7Mg-0.75Mn (AA5383)冷輥材經250℃安定化退火4小時,敏化前之β相析出形貌(OM):(a)A合金;(b)B(0.07Zr)合金…...35
圖3.11 Al-4.7Mg-0.75Mn (AA5383)冷輥材敏化後之β相析出形貌(OM):(a)A合金;(b)B(0.07Zr)合金……………………………36
圖3.12 Al-4.7Mg-0.75Mn (AA5383)冷輥材經220℃安定化退火4小時,敏化後之β相析出形貌(OM):(a)A合金;(b)B(0.07Zr)合金….36
圖3.13 Al-4.7Mg-0.75Mn (AA5383)冷輥材經250℃安定化退火4小時,敏化後之β相析出形貌(OM):(a)A合金;(b)B(0.07Zr)合金….37
圖3.14 Al-4.7Mg-0.75Mn (AA5383)冷輥材敏化後之β相析出形貌(SEM):(a)A合金;(b)B(0.07Zr)合金……………………….….38

圖3.15 Al-4.7Mg-0.75Mn (AA5383)冷輥材經220℃安定化退火4小時,敏化後之β相析出形貌(SEM):(a)A合金;(b)B(0.07Zr)合金..…38
圖3.16 Al-4.7Mg-0.75Mn (AA5383)冷輥材經250℃安定化退火4小時,敏化後之β相析出形貌(SEM):(a)A合金;(b)B(0.07Zr)合金…..39
圖3.17 Al-4.7Mg-0.75Mn (AA5383)於冷輥與不同安定化退火條件,敏化處理前後之微結構變化示意圖………………………………40
圖3.18 Al-4.7Mg-0.75Mn (AA5383)冷輥與不同安定化退火,經敏化處理後之ASTM G67重量損失測試(mg/cm2)…………………….51
圖3.19 Al-4.7Mg-0.75Mn (AA5383)敏化後經G67試驗之SEM表面腐蝕形貌:(a)冷輥合金A;(b)冷輥合金B(0.07Zr);(c)220℃安定化退火合金A;(d)220℃安定化退火合金B(0.07Zr);(e)250℃安定化退火合金A;(f)250℃安定化退火合金B(0.07Zr)…….…..52
圖3.20 Al-4.7Mg-0.75Mn (AA5383)冷輥材敏化後經G67試驗之SEM 表面腐蝕形貌:(a)A合金;(b)B(0.07Zr)合金………………….53
圖3.21 Al-4.7Mg-0.75Mn (AA5383)經220℃×4hr安定化退火,敏化後,進行67試驗之SEM表面腐蝕形貌:(a)A合金;(b)B(0.07Zr) 合金…………………………………………………………...….54
圖3.22 Al-4.7Mg-0.75Mn (AA5383)經250℃×4hr安定化退火,敏化後,進行67試驗之SEM表面腐蝕形貌:(a)A合金;(b)B(0.07Zr) 合金………………………………...…………………………….55
參考文獻 [ASTM1] ASTM B928/B928M-09 Standard Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments.
[ASTM2] ASTM B557M – 07 Standard Test Methods for Tension
Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products.
[ASTM3] ASTM G67-04 Standard Test Method for Determining the
Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum
Alloys by Mass Loss After Exposure to Nitric Acid (NAMLT Test).
[BHA] N.R.M.R. BHARGAVA, I. SAMAJDAR, S. RANGANATHAN,
and M.K. SURAPPA, “Role of Cold Work and SiC Reinforcements on
the β′/β Precipitation in Al-10 pct Mg Alloy,” Metallurgical and Materials Transactions A, Vol. 29A, pp.2835–2842.(1998)
[BOV] F.S. Bovard,“Corrosion in marine and saltwater environments II,
in D.A. Shifler, T. Tsuru, P.M. Natishan, S. Ito (Eds.),”Electrochemical
Society Proceedings, Vol. 2004–14, pp.232–243.(2005)
[CAB] M. Cabibbo, E. Evangelista, and S. Spigarelli,” Microstructural characterization of secondary-phase particles in a hot-deformed Al-Cu-Mg-Zr alloy,” Metallurgical and Materials Transactions A, Vol. 35, pp.293-300.(2004)
[DAV1] J. R. Davis and Associates, “ASM Specialty Handbook:
Aluminum and Aluminum Alloys,” ASM International Materials Park,
Ohio, p.675.(1994)
[DAV2] J. R. Davis and Associates, “ASM Specialty Handbook:
Aluminum and Aluminum Alloys,” ASM International Materials Park,
Ohio, p.579.(1994)
[DAV3] J. R. Davis and Associates, “ASM Specialty Handbook:
Aluminum and Aluminum Alloys,” ASM International Materials Park,
Ohio, p.43.(1994)
[DAV4] J. R. Davis and Associates, “ASM Specialty Handbook:
Aluminum and Aluminum Alloys,” ASM International Materials Park,
Ohio, p.31.(1994)
[DAV5] J. R. Davis and Associates, “ASM Specialty Handbook:
Aluminum and Aluminum Alloys,” ASM International Materials Park,
Ohio, p.493.(1994)
[DIX] E.H. Dix, Jr., W.A. Anderson, and M.B. Shumaker,“Influence of
service temperature on the resistance of wrought aluminum-magnesium
alloys to corrosion ,” Corrosion, vol. 15, pp. 19–26.(1959)
[DON] Yang dongxia, Lixiaoyan, Hedingyong, Huanghui,”Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints,” Materials Science & Engineering A Vlo.561 pp.226–231.(2013)
[EAS]M. Easton and D. StJohn:”Grain refinement of aluminum alloys: part II. Confirmation of, and a mechanism for, the solute paradigm,”Metallurgical and Materials Transactions A, Vol.30, pp.1625-1633.(1999)
[FAK] O. Fakhraei, M. Emamy,” Effects of Zr and B on the structure and tensile properties of Al–20%Mg alloy,” Materials and Design Vol.56 pp. 557–564(2014)
[GAO] Jie Gao and David J. Quesnel, “Enhancement of the stress corrosion sensitivity of AA5083 by heat treatment,” Metallurgical and Materials Transactions A, Vol.42, pp.356-364.(2010)
[GAR] M.A. Garcia-Bernal, R.S. Mishra, R. Verma, D. Hernandez-Silva,”Hot deformation behavior of friction-stir processed strip-cast 5083 aluminum alloys with different Mn contents,” Materials Science and Engineering A, Vol.534 pp.186–192.(2012)
[GAT] K. M. Gatenby, et al., in: T.H. Sanders Jr., E.A. Starke Jr. (Eds.), “Aluminum Alloys-Their Physical and Mechanical Properties,” Vol.1, Atlanta, USA, p.378.(1994)
[GOS] R. Goswamia, G. Spanosa, P.S. Paoa, R.L. Holtza,“Precipitation
behavior of the β phase in Al-5083,”Materials Science and Engineering A,Vol.527, pp. 1089–1095.( 2010)
[GUR] C.H. Gur, I. Yıldız, “Non-destructive investigation on the effect of precipitation hardening on impact toughness of 7020 Al–Zn–Mg alloy,” Materials Science and Engineering A, Vol.382, pp.395–400.(2004)
[HAT1] J.E. Hatch,“Aluminum: Properties and Physical Metallurgy,”
ASM International Metals Park, Ohio, p.356.(1984)
[HAT2] J.E. Hatch,“Aluminum: Properties and Physical Metallurgy,”
ASM International Metals Park, Ohio, p.231.(1984)
[JIA] Liu Jianhua, Liang Xin, Li Songmei,” Study of Microbiologically Induced Corrsion Action on Al-6Mg-Zr and Al-6Mg-Zr-Sc,” Science Di rect, Vol.25, pp.609-614.(2007)
[JON] R.H. Jones, D.R. Baer, M.J. Danielson, and J.S. Vetrano
“Role of Mg in the Stress Corrosion Cracking of an Al-Mg Alloy,”
Metallurgical and Materials Transactions A, Vol.32A, pp.1699-1711.(2001)
[KAS] K. T. Kashyap, T. Chandrashekar,”Effects and mechanisms of grain refinement in aluminum alloys,” Bulletin of Materials Science,Vol.24 pp.345-353.(2001)
[KNI]Keith E. Knipling, David C. Dunand, David N. Seidman,” Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during isothermal aging at 375-425 C,” Acta Materialia, Vol.56 pp.114-127. (2008)
[LEE1] S. W. Lee, J. W. Yeh,” Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion,” Materials Science and Engineering A, Vol.460-461, pp.409-419.(2007)
[LEE2] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon,” Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys,” Acta Materialia, Vol.50, pp. 553-564.(2002)
[LEE3] Young Bum Lee, Dong HyukShin, Kyung-Tae Park, Won Jong Nam,“Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature,” Scripta Materialia ,Vol.51, pp. 355-359.(2004)
[LEE4] S. L. Lee, S. T. Wu,”Identification of dispersoids in Al-Mg alloys containing Mn,” Metallurgical Transactions A, Vol.18A pp.1353-1357.(1987)
[LIU] Z. Liu, Z. Li, M. Wang, Y. Weng,”Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al-5Mg alloys,” Materials Science and Engineering A, Vol.483-484, pp.120-122.(2008)
[MAS] T. B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker, “Binary Alloy Phase Diagrams”, ASM International, Ohio, p.130.(1990)
[NAK] Y. Nakayama, T. Takaai, D. Jin,” Precipitation behaviors of β-phase and changes in mechanical properties of Al-Mg system alloys,” Materials Science Forum, Vol.217-222, pp.1269-1274.(1996)
[NEB] S. Nebti, D. Hamana, G. Cizeron,“Calorimetric study of
pre-precipitation and precipitation in Al-Mg alloy,” Acta Metall.
Mater,Vol.43, pp. 3583–3588.(1995)
[NOR] A. F. Norman, P. B. Prangnell and R. S. Mcewen,” The solidification behaviour of dilute aluminium-scandium alloys,” Acta Materialia, Vol. 46, pp.5715-5732.(1998)
[OCE] V. Ocenasek, M. Slamova,” Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys,” Materials Characterization, Vol.47, pp.157-162.(2001)
[OGU] I. N. A. Oguocha , O. J. Adigun , S. Yannacopoulos,“Effect of
sensitization heat treatment on properties of Al–Mg alloyAA5083-H116,”
J Mater Sci ,Vol.43,pp.4208–4214.(2008)
[PAR] J.K.Park, A.J.Ardell,”Microstructures of commercial 7075 Al alloys in the T651 and T7 Tempers,” Metallurgical Transaction A, Vol. 14A, pp.1957–1965.(1983)
[POP1] Miljana Popovic, Endre Romhanji, “Stress corrosion cracking susceptibility of Al-Mg alloy sheet with high Mg content,” Journal of Materials Processing Technology, Vol.125-126, pp.275-280.(2002)
[POP2] Miljana Popovi , Endre Romhanji ,“Characterization of microstructural changes in an Al-6.8 wt.% Mg alloy by electrical resistivity measurements,” Materials Science and Engineering A, Vol.492, pp.460–467.(2008)
[SEA] J.L. Searles, P.I. Gouma, R.G. Buchheit,“Stress Corrosion
Cracking of Sensitized AA5083(Al-4.5Mg-1.0Mn),” Metallurgical and Materials Transactions A, Vol. 32, pp.2859–2867.(2001)
[SEY] S.H. Seyed Ebrahimi , M. Emamy, N. Pourkia, H.R. Lashgari,“The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition,” Materials and Design Vol.31 pp. 4450–4456.(2010)
[TAN] L. Tan, T. R. Allen,” Effect of thermomechanical treatment on the corrosion of AA5083,”Corrosion Science, Vol.52, pp.548-554.(2010)
[VAS1] A. K. Vasudevan and R. D. Doherty,” Aluminum alloy-contemporary research and application,”p.87.(1989)
[VAS2] A. K. Vasudevan and R. D. Doherty,” Aluminum alloy-contemporary research and application,”p.84.(1989)
[VLA] M. Vlach, I. Stulíková, B. Smola, N. Žaludová ,”Characterization of phase development in non-isothermally annealed mould-cast and heat-treated Al–Mn–Sc–Zr alloys,” Materials Characterization, Vol.61, pp.1400-1405.(2010)
[YAS] Kiryl A. Yasakau , Mikhail L. Zheludkevich ,Sviatlan V. Lamakaa, Mario G.S. Ferreira “Role of intermetallic phases in localized corrosion of AA5083,” Electrochimica Acta , Vol.52 pp.7651-7659.(2007)
[YIN] Zhimin Yin, Qinglin Pan, Yonghong Zhang, Feng Jiang,” Effect of minor Sc and Zr on the microstructure and mechanical
properties of Al–Mg based alloys,” Materials Science and Engineering AVol.280 pp.151–155.(2000)
[ZHA] Z. Zhao, Y. Meng, and J. Cui,” Effect of Mn on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy,” China Foundry, Vol.9, pp.349-355.(2012)
[ZEN] Tian-You Zeng,“Manufacturing method for Al-Mg alloy sheet with high strength and high corrosion resistance,”Taiwan Patent Publication Number:201235481.(2012)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2014-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明