博碩士論文 101329020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.145.105.105
姓名 林玉羚(Yu-ling Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 電解質添加劑對鋅二次電池陽極電化學性質的影響
(Effects of various electrolyte additives on electrochemical deposition/dissolution of the anode in zinc secondary batteries)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析
★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響
★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究★ 高濃度電解質於鋰電池知應用研究
★ 熱解法製備硬碳材料應用於鈉離子電池負極★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響
★ 離子液體電解質於鈉離子電池之應用★ 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究從鋅空氣電池電解質的觀點切入,目的為解決鋅陽極在充放電過程中形成枝晶狀結構、在鹼性水溶液中易腐蝕及提升循環效率等問題。在含有25 g/L氧化鋅之6 M氫氧化鉀溶液中,加入3000 ppm不同添加劑,結果發現添加酒石酸者,可使循環效率從75.3 %提升至83.8 %為最多。
表面型態方面,添加檸檬酸者經過循環充放電後,鋅晶粒無明顯枝晶狀結構出現。添加CTAB、PEG 600與PEG 1000較有助於細化電極表面生成的鋅晶粒,抑制形成枝晶狀結構;XRD分析結果也同時發現,其鋅晶粒之(002)結晶面繞射強度較無添加劑者低。
在腐蝕抑制方面,從極化曲線可知,有機酸類如EDTA、不同分子量之PEG、離子液體陰離子鹽類如LiPF6、NaBF4、NaDCA、介面活性劑如CTAB添加劑都有減緩鋅腐蝕的作用,而PEG 1000添加劑使鋅金屬的腐蝕電位從-1.517 V上升至-1.489 V,腐蝕電流從498.05 μA/cm2下降至159.87 μA/cm2,抑制鋅溶解效果最佳。
摘要(英) From the point of zinc-air battery electrolyte, we aim at solving the zinc anode dendritic structure which is formed during charge/discharge process, easing corrosion and enhance current efficiency in an alkaline aqueous solution. In this study, 6 M potassium hydroxide solution containing 25 g/L zinc oxide was added 3000 ppm of different additives found that by adding tartaric acid, can promote current efficiency from 75.3% to 83.8%.
In morphology, after charge-discharge cycles, the solution adding citric acid has no significant dendritic structure. Adding CTAB, PEG 600 and PEG 1000 refine zinc grains and inhibit the formation of dendritic structure; XRD analysis also found that the diffraction intensity of basal plane (002) in Zn is lower compared no additives solution.
In corrosion inhibition, polarization curves shows that organic acids such as EDTA, PEG of different molecular weight, ionic liquids anionic salts such as LiPF6, NaBF4, NaDCA, surfactants such as CTAB has a slowing effect of zinc corrosion additives, and PEG 1000 Additives make corrosion potential of zinc metal increased from -1.517 V to -1.489 V, the corrosion current decreased from 498.05 μA / cm2 to 159.87 μA / cm2 which has best property of anti-corrosion in Zn metal.
關鍵字(中) ★ 枝晶狀結構
★ 循環效率
★ 添加劑
★ 鋅腐蝕
★ 鹼性溶液
關鍵字(英) ★ Dendrite formation
★ Current efficiency
★ Additives
★ Zn corrosion
★ Alkaline solution
論文目次 摘要 ............................................................................................................................................. I
ABSTRACT .............................................................................................................................. II
誌謝 .......................................................................................................................................... III
總目錄 ...................................................................................................................................... IV
表目錄 .................................................................................................................................... VII
圖目錄 ................................................................................................................................... VIII
一、 前言 .................................................................................................................................. 1
二、 研究背景與文獻回顧 ...................................................................................................... 4
2- 1 金屬空氣電池 .................................................................................................................... 4
2-1- 1 鋰空氣電池 ................................................................................................................ 4
2-1- 2 鋅空氣電池 ................................................................................................................ 6
2- 2 二次鋅空氣電池電解質 .................................................................................................. 10
2-2- 1 有機酸類添加劑 ...................................................................................................... 12
2-2- 2 聚乙二醇添加劑 ...................................................................................................... 13
2-2- 3 表面活性劑添加劑 .................................................................................................. 14
2- 3 離子液體概論 .................................................................................................................. 19
2- 4 離子液體在鋅二次電池電解質上的應用 ...................................................................... 22
2-4- 1 離子液體做為電解質應用 ...................................................................................... 22
2-4- 2 離子液體做為腐蝕抑制劑 ...................................................................................... 23
2-4- 3 離子液體做為表面勻平劑 ...................................................................................... 23
三、 實驗方法與步驟 ............................................................................................................ 28
3- 1 實驗材料 ........................................................................................................................... 28
3-1- 1 基礎電解質 ............................................................................................................... 28
3-1- 2 電解質添加劑 ........................................................................................................... 28
3-1- 3 電極材料 .................................................................................................................. 29
3- 2 不同電解質添加劑對於陽極鋅金屬之庫倫效率行為 .................................................. 29
3-2- 1 電化學測試 .............................................................................................................. 29
3-2- 2 循環伏安法 (Cyclic Voltammetry, CV) .................................................................. 30
3- 3 不同電解質添加劑對於陽極鋅金屬之枝晶狀結構影響 .............................................. 30
3-3- 1 三極式電化學法 ...................................................................................................... 30
3-3- 2 計時電位法 (chronopotentimetry, CP) .................................................................... 30
3-3- 3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) .................................... 31
3-3- 4 粉末X 光繞射儀(X-ray Powder Diffractometer, XRD) ......................................... 31
3- 4 不同電解質添加劑對於陽極鋅金屬之腐蝕行為 .......................................................... 32
3-4- 1 三極式電化學法 ...................................................................................................... 32
3-4- 2 開路電位(Open Circuit Potential, OCP) .................................................................. 32
3-4- 3 動態電位極化曲線(Potentiodynamic Polarization) ................................................ 32
四、 結果與討論 .................................................................................................................... 35
4- 1 無添加劑時陽極鋅之電化學行為表現 .......................................................................... 35
4-1- 1 循環伏安法 .............................................................................................................. 35
4-1- 2 循環伏安法掃描速率與負電位極限對庫倫效率之影響 ...................................... 38
4-1- 3 鋅金屬之表面形態 .................................................................................................. 39
4-1- 4 鋅金屬之腐蝕行為 .................................................................................................. 40
4- 2 有機酸類電解質添加劑對鋅陽極電化學行為之影響 .................................................. 49
4-2- 1 循環伏安法 ............................................................................................................... 49
4-2- 2 有機酸類電解質添加劑對鋅陽極循環效率之影響 .............................................. 50
4-2- 3 有機酸類電解質添加劑對鋅陽極表面形態之影響 .............................................. 52
4-2- 4 有機酸類電解質添加劑對鋅陽極腐蝕行為之影響 .............................................. 54
4- 3 不同分子量之聚乙二醇電解質添加劑對鋅陽極電化學行為之影響 .......................... 62
4-3- 1 循環伏安法 .............................................................................................................. 62
4-3- 2 不同分子量之聚乙二醇電解質添加劑對鋅陽極循環效率之影響 ...................... 63
4-3- 3 不同分子量之聚乙二醇電解質添加劑對鋅陽極表面形態之影響 ...................... 64
4-3- 4 不同分子量之聚乙二醇電解質添加劑對鋅陽極腐蝕行為之影響 ...................... 66
4- 4 不同離子液體陰離子電解質添加劑對鋅陽極電化學行為之影響 .............................. 73
4-4- 1 循環伏安法 ............................................................................................................... 73
4-4- 2 不同離子液體陰離子電解質添加劑對鋅陽極循環效率之影響 .......................... 75
4-4- 3 不同離子液體陰離子電解質添加劑對鋅陽極表面形態之影響 .......................... 76
4-4- 4 不同離子液體陰離子電解質添加劑對鋅陽極腐蝕行為之影響 .......................... 78
4- 5 不同表面活性劑電解質添加劑對鋅陽極電化學行為之影響 ....................................... 85
4-5- 1 循環伏安法 .............................................................................................................. 85
4-5- 2 不同表面活性劑電解質添加劑對鋅陽極循環效率之影響 .................................. 86
4-5- 3 不同表面活性劑電解質添加劑對鋅陽極表面形態之影響 .................................. 87
4-5- 4 不同表面活性劑電解質添加劑對鋅陽極腐蝕行為之影響 .................................. 89
五、 結論 ................................................................................................................................ 96
六、參考文獻 .......................................................................................................................... 97
參考文獻 1. Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science, 2011. 334(6058): p. 928-935.
2. Rahman, M.A., X. Wang, and C. Wen, High Energy Density Metal-Air Batteries: A Review. Journal of the Electrochemical Society, 2013. 160(10): p. A1759-A1771.
3. Goh, F.W.T., et al., Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc-air battery. Electrochimica Acta, 2013. 114: p. 598-604.
4. Chakkaravarthy, C., A.K.A. Waheed, and H.V.K. Udupa, ZINC-AIR ALKALINE BATTERIES - A REVIEW. Journal of Power Sources, 1981. 6(3): p. 203-228.
5. Li, Y. and H. Dai, Recent advances in zinc-air batteries. Chem Soc Rev, 2014. 43(15): p. 5257-75.
6. D. Linden, T.B.R., Handbooks of Batteries. 2001: McGraw-Hill.
7. Armand, M. and J.M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652-657.
8. Abraham, K.M. and Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery. Journal of the Electrochemical Society, 1996. 143(1): p. 1-5.
9. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 2004. 104(10): p. 4303-4417.
10. Whittingham, M.S., Metal-Air Batteries: A Reality Check. The Electrochemical Society, 2012.
11. Chek Hai Lim, A.G.K., Hyun-Wook Lee, Do Kyung Kim, LiTi2(PO4)3/reduced graphene oxide hybrids for high performance cathode materials in lithium ion batteries. The Electrochemical Society, 2012.
12. Steven J. Visco, B.D.K., Yevgeniy S. Nimon, Lutgard C. De Jonghe, Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture. US Patent 7,282,295, 2007.
13. Kumar, B., et al., A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery. Journal of the Electrochemical Society, 2010. 157(1): p. A50-A54.
14. G. Toussaint, P.S., L. Akrour, R. Rouget and and F. Fourgeot, ECS Trans, 2010. 28: p. 25.
15. Gewirth, A.A. and M.S. Thorum, Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges. Inorganic Chemistry, 2010. 49(8): p. 3557-3566.
16. Spendelow, J.S. and A. Wieckowski, Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Physical Chemistry Chemical Physics, 2007. 9(21): p. 2654-2675.
17. Lee, J.-S., et al., Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced Energy Materials, 2011. 1(1): p. 34-50.
18. Cheng, F. and J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 2012. 41(6): p. 2172-2192.
19. Cao, R., et al., Recent Progress in Non-Precious Catalysts for Metal-Air Batteries. Advanced Energy Materials, 2012. 2(7): p. 816-829.
20. Kim, H., et al., Metallic anodes for next generation secondary batteries. Chemical Society Reviews, 2013. 42(23): p. 9011-9034.
21. Wang, Z.L., et al., Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews, 2014. 43(22): p. 7746-7786.
22. J. Jindra, J.M., M. Musilová, Journal of Applied Electrochemistry: p. Volume 3, Issue 4 , PP 297-301
23. Sapkota, P. and H. Kim, Zinc-air fuel cell, a potential candidate for alternative energy. Journal of Industrial and Engineering Chemistry, 2009. 15(4): p. 445-450.
24. Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions. 1974: Cebelcor, Brussels.
25. PAUL DELAHAY, M.P., and PIERRE VAN RYSSELBERGHE, Potential-pH Diagram of Zinc and Its Applications to the Study of Zinc Corrosion. J. Electrochem. Soc., 1951. 98(3): p. 101-105.
26. Kim, K., et al., Anions of organic acids as gas suppressants in zinc-air batteries. Materials Research Bulletin, 2010. 45(3): p. 262-264.
27. Yang, C.C. and S.J. Lin, Improvement of high-rate capability of alkaline Zn-MnO2 battery. Journal of Power Sources, 2002. 112(1): p. 174-183.
28. Cheng, H.-H. and C.-S. Tan, Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. Journal of Power Sources, 2006. 162(2): p. 1431-1436.
29. Shaigan, N.Q., W.; Takeda, T., Morphology Control of Electrodeposited Zinc from Alkaline Zincate Solutions for Rechargeable Zinc Air Batteries. ECS Transactions, 2010. 28(32): p. 35-44.
30. Qing Hua Tian, L.Z.C., Jing Xin Liu, Xue Yi Guo, Manufacturing of Zinc Powder with Dendritic Microstructure for Zinc-Air Battery by Electrodeposition. Advanced Materials Research, 2012. 460: p. 300-303.
31. Lee, C.W., et al., Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives. Journal of Power Sources, 2006. 159(2): p. 1474-1477.
32. Liang, M., et al., Synergistic effect of polyethylene glycol 600 and polysorbate 20 on corrosion inhibition of zinc anode in alkaline batteries. Journal of Applied Electrochemistry, 2011. 41(8): p. 991-997.
33. Mele, C. and B. Bozzini, Spectroelectrochemical investigation of the anodic and cathodic behaviour of zinc in 5.3 M KOH. Journal of Applied Electrochemistry, 2014. 45(1): p. 43-50.
34. Morón, L.E., et al., Zn Electrodeposition from an Acidic Chloride Bath Containing Polyethyleneglycol (Mw 200) and Benzylideneacetone as Additives. Journal of The Electrochemical Society, 2011. 158(7): p. D435.
35. Ghavami, R.K. and Z. Rafiei, Performance improvements of alkaline batteries by studying the effects of different kinds of surfactant and different derivatives of benzene on the electrochemical properties of electrolytic zinc. Journal of Power Sources, 2006. 162(2): p. 893-899.
36. Plechkova, N.V. and K.R. Seddon, Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 2008. 37(1): p. 123-150.
37. Huang, J.F., et al., Hydrophobic bronsted acid-base ionic liquids based on PAMAM dendrimers with high proton conductivity and blue photoluminescence. Journal of the American Chemical Society, 2005. 127(37): p. 12784-12785.
38. Earle, M.J., et al., The distillation and volatility of ionic liquids. Nature, 2006. 439(7078): p. 831-834.
39. Enders, A., et al., Magic alkali-fullerene compound clusters of extreme thermal stability. Journal of Chemical Physics, 2006. 125(19).
40. Wasserscheid, P., Chemistry - Volatile times for ionic liquids. Nature, 2006. 439(7078): p. 797-797.
41. Chang, J.-K., et al., Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl(3))-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior. Electrochemistry Communications, 2007. 9(7): p. 1602-1606.
42. Deng, M.-J., et al., Dicyanamide anion based ionic liquids for electrodeposition of metals. Electrochemistry Communications, 2008. 10(2): p. 213-216.
43. Simons, T.J., et al., High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: The effect of Zn2+ salt and water concentration. Electrochemistry Communications, 2012. 18: p. 119-122.
44. Xu, M., et al., Electrochemical behavior of Zn/Zn(II) couples in aprotic ionic liquids based on pyrrolidinium and imidazolium cations and bis(trifluoromethanesulfonyl)imide and dicyanamide anions. Electrochimica Acta, 2013. 89: p. 756-762.
45. Gasparac, R., et al., In situ and ex situ studies of imidazole and its derivatives as copper corrosion inhibitors II. AC impedance, XPS, and SIMS studies. Journal of the Electrochemical Society, 2000. 147(3): p. 991-998.
46. Quraishi, M.A., et al., Corrosion inhibition of aluminium in acid solutions by some imidazoline derivatives. Journal of Applied Electrochemistry, 2007. 37(10): p. 1153-1162.
47. Ashassi-Sorkhabi, H. and M. Es′haghi, Corrosion inhibition of mild steel in acidic media by BMIm Br Ionic liquid. Materials Chemistry and Physics, 2009. 114(1): p. 267-271.
48. Zhang, Q.B. and Y.X. Hua, Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochimica Acta, 2009. 54(6): p. 1881-1887.
49. Guzman-Lucero, D., et al., Synthesis of Selected Vinylimidazolium Ionic Liquids and Their Effectiveness as Corrosion Inhibitors for Carbon Steel in Aqueous Sulfuric Acid. Industrial & Engineering Chemistry Research, 2011. 50(12): p. 7129-7140.
50. Zhao, Z., et al., Study on corrosion property of a series of hexafluorophosphate ionic liquids on steel surface. Corrosion Engineering Science and Technology, 2011. 46(4): p. 330-333.
51. Zhou, X., H. Yang, and F. Wang, BMIM BF4 ionic liquids as effective inhibitor for carbon steel in alkaline chloride solution. Electrochimica Acta, 2011. 56(11): p. 4268-4275.
52. Tuken, T., et al., Inhibition effect of 1-ethyl-3-methylimidazolium dicyanamide against steel corrosion. Corrosion Science, 2012. 59: p. 110-118.
53. Xu, M., et al., Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide. Journal of Power Sources, 2015. 274: p. 1249-1253.
54. Muresan, L., et al., INHIBITION OF LEAD ELECTROCRYSTALLIZATION BY ORGANIC ADDITIVES. Electrochimica Acta, 1992. 37(12): p. 2249-2254.
55. Be´rube´ LP, L.E.r.G., A quantitative method of determining the degree of texture of zinc electrodeposits. J Electrochem Soc, 1989. 136(8): p. 2314.
56. Juhel, G., et al., EFFECT OF THE SURFACTANT FORAFAC ON HYDROGEN EVOLUTION ON A ZINC ELECTRODE. Electrochimica Acta, 1990. 35(2): p. 479-481.
57. de Carvalho, M.F., E.P. Barbano, and I.A. Carlos, Influence of disodium ethylenediaminetetraacetate on zinc electrodeposition process and on the morphology, chemical composition and structure of the electrodeposits. Electrochimica Acta, 2013. 109: p. 798-808.
58. Ortiz-Aparicio, J.L., et al., Electrodeposition of zinc in the presence of quaternary ammonium compounds from alkaline chloride bath. Journal of Applied Electrochemistry, 2014. 45(1): p. 67-78.
指導教授 張仍奎(Jeng-kuei Chang) 審核日期 2015-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明