博碩士論文 101329022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.14.253.221
姓名 李旻怡(Min-i Lee)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱
(Photodetector - Light Harvesting and specific surface Enhancement (LivE))
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性
★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究★ 銅鎳合金微結構之微電鍍研究
★ 以微電鍍法製備三維銅錫介金屬化合物微結構★ 電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文採用化學浴沉積法( chemical bath deposition, CBD) 製備適用於光感測器
( photodetectors)與染料敏化太陽能電池( dye-sensitized solar cell, DSSC)的氧化鋅奈米柱結構。在製作光感測器時,首先以p- 型矽為基板來析鍍出氧化鋅奈米柱鍍層; 而在製作染料敏化太陽能電池時,則首先將含氧化鋅奈米柱之薄膜成長於氧化銦錫玻璃( indium-tin oxide, I TO) 上,然後進行後續之製作。為獲致高長寬比、大比表面積且排列整齊的氧化鋅奈米柱結構,以增進光感測器的吸光性與染料敏化太陽能電池的光電效率,必須尋求優化之化學浴沉積法來成長最佳結構之氧化鋅奈米柱。本論文分為三個部份: ( 1) 研究重點首先在尋求製備適用於光感測器與染料敏化太陽能電池的氧化鋅奈米柱條件; ( 2) 其次在以n-型 ZnO 與 p-型Si 基材進行異質接合( heterojunction)來製作光感測器,並進行光感測實驗,由電流與電壓特性圖和電流對時間之特性圖得知: 薄膜中氧化鋅奈米柱分佈緊密, 且具有大比表面積、高長寬比結構時,光感測器之敏感性得以增強;( 3) 第三部分則以氧化鋅奈米柱製作染料敏化太陽能電池,並進行測試,應用積分球做光吸收率之量測,進而由電流對電壓特性作圖分析,結果顯示: 氧化鋅奈米柱比表面積的增加有利於增加染劑的吸附並使此太陽能電池擴增至可見光光譜之吸收。

在本論文研究期間,曾經嘗試以溶膠凝膠法製備鋁、錫共摻至氧化鋅薄膜之研究,
企圖尋求經濟、無毒之氧化鋅透明導電薄膜,以便取代論文中第三部分所使用的氧化銦錫玻璃( I TO) ,製作一對環境友善之“全氧化鋅”染料敏化太陽能電池。研究結果雖然在透光度上已與I TO 玻璃相近,但在導電性上,與I TO玻璃仍有差距,為使論文內容精簡、結構嚴謹,只好將此部分之結果呈現於附錄中。
摘要(英) Nanorods of zinc oxide (ZnO) suitable for making of photodetectors and
dye-sensitized solar cell (DSSC) were prepared by means of chemical bath deposition (CBD) method in this work. For making photodetectors, the ZnO nanorods were deposited on silicon substrate; whereas for making of photovoltaics, the ZnO nanorods were deposited on the glass of indium-tin oxide (ITO). On the purpose to develop the nanorods with high aspect ratio, large specific surface area and good alignment of matrices suitable for light trapping and harvesting, the conditions of the CBD should be carefully controlled. This work comprised three parts: the first one focused the conditions to prepare ZnO nanorods those are qualified enough for making the photodetectors and photovoltaics. The second is
the preparation of photodetectors from a concept of the heterojunction between an n-type ZnO and the p-type Si based, and the photodetection was also demonstrated to check the detectors. The third part was to construct the ZnO-based photovoltaic devices, a simple Grätzel type solar cell (DSSC), and the demonstration to test their performance. The performance of the proto-type photodetectors and photovoltaics indicated that ZnO nanorods prepared by CBD in this work were satisfactory for their use in the devices.

Another interest was to prepare the transparent conductive oxide (TCO) films of ZnO (doped with aluminium and tin) by sol-gel dip-coating process. This was a trial to replace ITO-coating on the glass for a concept with overall oxide-devices on the base of simple ZnO. Unfortunately, even the optical transparency was competitive; the electrical conductivity of the Al, Sn-doped ZnO films was inferior to ITO. Therefore, the preparation
and characterization of Al, Sn-doped ZnO films were put in the appendix.
關鍵字(中) ★ 氧化鋅奈米柱
★ 化學浴沈積法
★ 光感測器
★ 染料敏化太陽能電池
關鍵字(英) ★ ZnO nanorods
★ CBD method
★ Photodetector
★ Dye-sensisized solar cell (DSSC)
論文目次 Contents

Abstract…………………………………………………………………………….......i
Acknowledgements……………………………………………….…….…..….…..iii
Contents………………………………………..………………………….…....…....iv
List of Figures…………………………………………..……………….……..…....vi
List of Tables……………………………………….……..……………………......viii

1. Introduction…………..………………………………………………………..…..1
1.1. Research background………………………………………………….….…...1
1.2. Motivation…………………………………………………………………...……3

2. Literature survey………..……………………………………………….….........4
2.1 Zinc Oxide…………………………...………………………………..……........4
2.1.1 Synthesizing ZnO……………………………………...…………….…….….4
2.1.2 Basic synthetic mythologies and growth mechanisms……....………..4
2.1.3 Growth in alkaline solutions……………….………………..................…5
2.1.4 Seeded growth……………………...……………………………..…….........5
2.2 Photodetector…………………………………………………………...............7
2.2.1 Ultraviolet (UV) photodetectors………………………………..................7
2.2.2 ZnO-based photodetectors…………………..……………….........……...7
2.2.3 p-n junction photodiodes……………………........………....……....……7
2.2.4 ZnO p-. heterojunction photodiodes…………...……......….……....…..8
2.3 Photovoltaic……………………………………………..……......………….......9
2.3.1 The development of the photovoltaic………………..……………..….....9
2.3.2 Dye-sensitized solar cell (DSSC)………………………..…........…………9
2.3.3 ZnO based dye-sensitized solar cell……………….…….........…….....10

3. Theoretical background………………….………………………….………….11
3.1 Synthesis ZnO crystalline structure……………………...….…...............11
3.2 Working principle of ZnO based photodetector……….....…......……...12
3.3 Electrical characterization of photodetector……………......….………...13
3.4 Working principle of DSSC…………………...………......…………………..14
3.5 Electrical characterization of DSSC………………...………....………….…15

4. Experiments…………………………..……………………………..…...…...….16
4.1 Synthesis of ZnO thin film……………...………………….....…..……..…..16
4.1.1 Synthesis of seed layer (SL)………...…………………….…...……….….16
4.1.1.1 Materials……………………………………………….....…...................16
4.1.1.2 Preparation method………...……………..….....………….....…...…..16
4.1.2 The growth of ZnO nanorods……………...…………..........……….….16
4.1.2.1 Materials…………………………………….....…………………........….16
4.1.2.2 Equipment……………………………………….......…………........…...16
4.1.2.3 Process……………………………………….....….………….......…...….17
4.1.3 Deposition of ZnO microstructures……………........…….……..........17
4.1.4 ZnO heterostructure (meso-nano)…………………....………………….17
4.2 Photodetector device……………………………..………….....…..............18
4.2.1 Assembling………………………………………………........………...…...18
4.2.2 Experiment…………………………………………..………..………......….18
4.3 Fabricate dye-sensitized solar cell……………………......………...........19
4.3.1 Components…………………………………………….......………….....…19
4.3.2 Preparation.…………………………………………….......………………...19
4.3.3 Assembling……………………………………………….......….…...……...19
4.3.4 Experiment…………………………………………….....…..…….…...……19

5. Results and discussion………...…...………….……………….……………...21
5.1 Analysis the conditions of synthesizing ZnO nanorods…..…….…..….21
5.1.1 Zn(Ac) to NH3 ratio………...………………...……...…………….....…....21
5.1.2 Growth temperature…………………………….…......…….....…….…....22
5.1.3 Growth time……………………………………….......…………….….…....23
5.2 Electrical characterization of the ZnO photodetector………………...…24
5.2.1 Current-Voltage Analysis………………........…………......…..............24
5.2.1.1 Without ZnO nanorods …………............…..……...........................24
5.2.1.2 With ZnO nanorods …………...…….……………..........………….…..24
5.2.2 Time response (Current-Time Analysis)……………......……………...27
5.2.3 Position impact………………………...……………...………………...…..29
5.3 Electrical analysis of the ZnO DSSC……...…………......……....…………30

6. Conclusions…………………………………………….……..…….………...…..32

References…………...………………………………….………..….……...……….33

Appendix
A. Literature review - Transparent conducting oxides (TCO)………….…..44
1. Doped ZnO…………………………………………………….…….….……...….44
B. Experimenal method - Synthesis of TAZO thin films….……….……......45
1. TAZO thin films deposition process………………………..…......…….…..45
2. Characterization……………………….……………………..……….………….45
3. Electrochemistry measurements………………………….....……….……….45
C. Results - Analysis the synthesizing TAZO thin films…….…….…...…...47
1. Morphology and Microstructure of the thin films……………..…………..47
2. Optical properties of the thin film………………………...…….…………...49
3. Electrical properties of the thin film……………………………………..…..50
4. Photoelectrochemisty and Anti-corrosion analysis of TAZO films…....51
參考文獻 1. Kong, F.-T.; Dai, S.-Y.; Wang, K.-J. Review of Recent Progress in Dye-Sensitized Solar Cells. Advances in OptoElectronics 2007, 75384.
2. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J Appl Phys 2005, 98, -.
3. Look, D. C. Recent advances in ZnO materials and devices. Materials Science and Engineering: B 2001, 80, 383-387.
4. Yousefi, R.; Zak, A. K.; Jamali-Sheini, F. The effect of group-I elements on the structural and optical properties of ZnO nanoparticles. Ceramics International 2013, 39, 1371-1377.
5. Guo, C. X.; Dong, Y.; Yang, H. B.; Li, C. M. Graphene Quantum Dots as a Green Sensitizer to Functionalize ZnO Nanowire Arrays on F-Doped SnO2 Glass for Enhanced Photoelectrochemical Water Splitting. Advanced Energy Materials 2013, 3, 997-1003.
6. Fortunato, E.; Barquinha, P.; Pimentel, A.; Gonçalves, A.; Marques, A.; Pereira, L.; Martins, R. Recent advances in ZnO transparent thin film transistors. Thin Solid Films 2005, 487, 205-211.
7. Yun, F.; Moon, Y. T.; Fu, Y.; Zhu, K.; Ozgur, U.; Morkoc, H.; Inoki, C. K.; Kuan, T. S.; Sagar, A.; Feenstra, R. M. Efficacy of single and double SiNx interlayers on defect reduction in GaN overlayers grown by organometallic vapor-phase epitaxy. J Appl Phys 2005, 98.
8. Heo, Y. W.; Norton, D. P.; Tien, L. C.; Kwon, Y.; Kang, B. S.; Ren, F.; Pearton, S. J.; LaRoche, J. R. ZnO nanowire growth and devices. Materials Science and Engineering: R: Reports 2004, 47, 1-47.
9. Yi, G.-C.; Wang, C.; Park, W. I. ZnO nanorods: synthesis, characterization and applications. Semiconductor Science and Technology 2005, 20, S22.
10. Park, W. I.; Yi, G. C. Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN. Advanced Materials 2004, 16, 87-90.
11. Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P. Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters 2003, 83, 144-146.
12. Wang, W. Z.; Zeng, B. Q.; Yang, J.; Poudel, B.; Huang, J. Y.; Naughton, M. J.; Ren, Z. F. Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission. Advanced Materials 2006, 18, 3275-3278.
13. Wei, T.-Y.; Yeh, P.-H.; Lu, S.-Y.; Wang, Z. L. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor. Journal of the American Chemical Society 2009, 131, 17690-17695.
14. Yeh, P.-H.; Li, Z.; Wang, Z. L. Schottky-Gated Probe-Free ZnO Nanowire Biosensor. Advanced Materials 2009, 21, 4975-4978.
15. Zhou, J.; Gu, Y.; Hu, Y.; Mai, W.; Yeh, P.-H.; Bao, G.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters 2009, 94, 191103.
16. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat Mater 2005, 4, 455-459.
17. Weintraub, B.; Wei, Y.; Wang, Z. L. Optical Fiber/Nanowire Hybrid Structures for Efficient Three-Dimensional Dye-Sensitized Solar Cells. Angewandte Chemie International Edition 2009, 48, 8981-8985.
18. Wei, Y.; Xu, C.; Xu, S.; Li, C.; Wu, W.; Wang, Z. L. Planar Waveguide−Nanowire Integrated Three-Dimensional Dye-Sensitized Solar Cells. Nano Letters 2010, 10, 2092-2096.
19. Wang, Z. L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242-246.
20. Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science 2007, 316, 102-105.
21. Xu, S.; Wang, Z. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Research 2011, 4, 1013-1098.
22. Cheng, H.-M.; Chiu, W.-H.; Lee, C.-H.; Tsai, S.-Y.; Hsieh, W.-F. Formation of Branched ZnO Nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications. The Journal of Physical Chemistry C 2008, 112, 16359-16364.
23. Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J. ZnO Nanotube Based Dye-Sensitized Solar Cells. Nano Letters 2007, 7, 2183-2187.
24. Wang, X.; Ding, Y.; Summers, C. J.; Wang, Z. L. Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts. The Journal of Physical Chemistry B 2004, 108, 8773-8777.
25. Kar, S.; Dev, A.; Chaudhuri, S. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays. The journal of physical chemistry. B 2006, 110, 17848-53.
26. Zhong Lin, W. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter 2004, 16, R829.
27. Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Letters 2011, 11, 666-671.
28. Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G. ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials 2009, 21, 4087-4108.
29. Vayssieres, L.; Keis, K.; Lindquist, S.-E.; Hagfeldt, A. Purpose-Built Anisotropic Metal Oxide Material:  3D Highly Oriented Microrod Array of ZnO. The Journal of Physical Chemistry B 2001, 105, 3350-3352.
30. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of Semiconducting Oxides. Science 2001, 291, 1947-1949.
31. Yuan, H.; Zhang, Y. Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD. Journal of Crystal Growth 2004, 263, 119-124.
32. Sun, Y.; Fuge, G. M.; Ashfold, M. N. R. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chemical Physics Letters 2004, 396, 21-26.
33. Chiou, W.-T.; Wu, W.-Y.; Ting, J.-M. Growth of single crystal ZnO nanowires using sputter deposition. Diamond and Related Materials 2003, 12, 1841-1844.
34. Baruah, S.; Dutta, J. pH-dependent growth of zinc oxide nanorods. Journal of Crystal Growth 2009, 311, 2549-2554.
35. Liu, B.; Zeng, H. C. Room Temperature Solution Synthesis of Monodispersed Single-Crystalline ZnO Nanorods and Derived Hierarchical Nanostructures. Langmuir 2004, 20, 4196-4204.
36. Demianets, L. N.; Kostomarov, D. V.; Kuz’mina, I. P.; Pushko, S. V. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr. Rep. 2002, 47, S86-S98.
37. Kawska, A.; Duchstein, P.; Hochrein, O.; Zahn, D. Atomistic Mechanisms of ZnO Aggregation from Ethanolic Solution: Ion Association, Proton Transfer, and Self-Organization. Nano Letters 2008, 8, 2336-2340.
38. Viswanatha, R.; Amenitsch, H.; Sarma, D. D. Growth Kinetics of ZnO Nanocrystals:  A Few Surprises. Journal of the American Chemical Society 2007, 129, 4470-4475.
39. Guo, L.; Ji, Y. L.; Xu, H.; Simon, P.; Wu, Z. Regularly Shaped, Single-Crystalline ZnO Nanorods with Wurtzite Structure. Journal of the American Chemical Society 2002, 124, 14864-14865.
40. Liu, J.; Huang, X.; Li, Y.; Ji, X.; Li, Z.; He, X.; Sun, F. Vertically Aligned 1D ZnO Nanostructures on Bulk Alloy Substrates:  Direct Solution Synthesis, Photoluminescence, and Field Emission. The Journal of Physical Chemistry C 2007, 111, 4990-4997.
41. Vayssieres, L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials 2003, 15, 464-466.
42. Cheng, C.; Yan, B.; Wong, S. M.; Li, X.; Zhou, W.; Yu, T.; Shen, Z.; Yu, H.; Fan, H. J. Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays. ACS Applied Materials & Interfaces 2010, 2, 1824-1828.
43. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays. Angewandte Chemie International Edition 2003, 42, 3031-3034.
44. Liu, T.-Y.; Liao, H.-C.; Lin, C.-C.; Hu, S.-H.; Chen, S.-Y. Biofunctional ZnO Nanorod Arrays Grown on Flexible Substrates. Langmuir 2006, 22, 5804-5809.
45. Qin, Y.; Wang, X.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809-813.
46. Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M.; Wang, Z. L. Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage. Angewandte Chemie International Edition 2011, 50, 1683-1687.
47. Na, J.-S.; Gong, B.; Scarel, G.; Parsons, G. N. Surface Polarity Shielding and Hierarchical ZnO Nano-Architectures Produced Using Sequential Hydrothermal Crystal Synthesis and Thin Film Atomic Layer Deposition. ACS Nano 2009, 3, 3191-3199.
48. Teng, M.; Min, G.; Mei, Z.; Yanjun, Z.; Xidong, W. Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 2007, 18, 035605.
49. Hsiao, C.-S.; Peng, C.-H.; Chen, S.-Y.; Liou, S.-C. Tunable growth of ZnO nanorods synthesized in aqueous solutions at low temperatures. Journal of Vacuum Science & Technology B 2006, 24, 288-291.
50. Jijun, Q.; Xiaomin, L.; Weizhen, H.; Se-Jeong, P.; Hyung-Kook, K.; Yoon-Hwae, H.; Jae-Ho, L.; Yang-Do, K. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method. Nanotechnology 2009, 20, 155603.
51. Cao, X.; Zeng, H.; Wang, M.; Xu, X.; Fang, M.; Ji, S.; Zhang, L. Large Scale Fabrication of Quasi-Aligned ZnO Stacking Nanoplates. The Journal of Physical Chemistry C 2008, 112, 5267-5270.
52. Peterson, R. B.; Fields, C. L.; Gregg, B. A. Epitaxial Chemical Deposition of ZnO Nanocolumns from NaOH Solutions. Langmuir 2004, 20, 5114-5118.
53. Zhou, Z.; Deng, Y. Kinetics Study of ZnO Nanorod Growth in Solution. The Journal of Physical Chemistry C 2009, 113, 19853-19858.
54. Liu, K.; Sakurai, M.; Aono, M. ZnO-Based Ultraviolet Photodetectors. Sensors 2010, 10, 8604-8634.
55. Monroy, E.; Calle, F.; Pau, J. L.; Muñoz, E.; Omnès, F.; Beaumont, B.; Gibart, P. AlGaN-based UV photodetectors. Journal of Crystal Growth 2001, 230, 537-543.
56. Muñoz, E.; Monroy, E.; Pau, J. L.; Calle, F.; Omnès, F.; Gibart, P. III nitrides and UV detection. Journal of Physics: Condensed Matter 2001, 13, 7115.
57. Yu-Zung, C.; Jing-Jou, T. GaN Photodetectors with Transparent Indium Tin Oxide Electrodes. Japanese Journal of Applied Physics 2004, 43, 4146.
58. Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W.; Steiner, T. Recent advances in processing of ZnO. Journal of Vacuum Science & Technology B 2004, 22, 932-948.
59. Mollow, E. Proceedings of the Photoconductivity Conference. Wiley: New York, NY, USA 1954.
60. Fabricius, H.; Skettrup, T.; Bisgaard, P. Ultraviolet detectors in thin sputtered ZnO films. Appl. Opt. 1986, 25, 2764-2767.
61. Ohta, H.; Hirano, M.; Nakahara, K.; Maruta, H.; Tanabe, T.; Kamiya, M.; Kamiya, T.; Hosono, H. Fabrication and photoresponse of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO. Applied Physics Letters 2003, 83, 1029-1031.
62. Alivov, Y. I.; Özgür, Ü.; Doğan, S.; Johnstone, D.; Avrutin, V.; Onojima, N.; Liu, C.; Xie, J.; Fan, Q.; Morkoç, H. Photoresponse of n-ZnO∕p-SiC heterojunction diodes grown by plasma-assisted molecular-beam epitaxy. Applied Physics Letters 2005, 86, 241108 - 241108-3.
63. Kosyachenko, L. A.; Lashkarev, G. V.; Sklyarchuk, V. M.; Ievtushenko, A. I.; Sklyarchuk, O. F.; Lazorenko, V. I.; Ulyashin, A. ZnO-based photodetector with internal photocurrent gain. physica status solidi (a) 2010, 207, 1972-1977.
64. Zhu, H.; Shan, C. X.; Yao, B.; Li, B. H.; Zhang, J. Y.; Zhao, D. X.; Shen, D. Z.; Fan, X. W. High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction. The Journal of Physical Chemistry C 2008, 112, 20546-20548.
65. Park, C. H.; Jeong, I. S.; Kim, J. H.; Im, S. Spectral responsivity and quantum efficiency of n-ZnO/p-Si photodiode fully isolated by ion-beam treatment. Applied Physics Letters 2003, 82, 3973-3975.
66. Jeong, I.-S.; Kim, J. H.; Im, S. Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure. Applied Physics Letters 2003, 83, 2946-2948.
67. Goetzberger, A.; Hebling, C. Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells 2000, 62, 1-19.
68. Goetzberger, A.; Hebling, C.; Schock, H.-W. Photovoltaic materials, history, status and outlook. Materials Science and Engineering: R: Reports 2003, 40, 1-46.
69. Bagnall, D. M.; Boreland, M. Photovoltaic technologies. Energy Policy 2008, 36, 4390-4396.
70. Green, M. A. Recent developments in photovoltaics. Solar Energy 2004, 76, 3-8.
71. Oliver, M.; Jackson, T. The market for solar photovoltaics. Energy Policy 1999, 27, 371-385.
72. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25, 676-677.
73. Bergmann, R. B. Crystalline Si thin-film solar cells: a review. Applied Physics A 1999, 69, 187-194.
74. Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic Technology: The Case for Thin-Film Solar Cells. Science 1999, 285, 692-698.
75. Carlson, D. E.; Wronski, C. R. Amorphous silicon solar cell. Applied Physics Letters 1976, 28, 671-673.
76. Yang, J.; Banerjee, A.; Guha, S. Amorphous silicon based photovoltaics—from earth to the “final frontier”. Solar Energy Materials and Solar Cells 2003, 78, 597-612.
77. Sana, P.; Salami, J.; Rohatgi, A. Fabrication and Analysis of High-Efficiency Polycrystalline Silicon Solar-Cells. Ieee Transactions on Electron Devices 1993, 40, 1461-1468.
78. Ward, J. S.; Ramanathan, K.; Hasoon, F. S.; Coutts, T. J.; Keane, J.; Contreras, M. A.; Moriarty, T.; Noufi, R. A 21.5% efficient Cu(In,Ga)Se2 thin-film concentrator solar cell. Progress in Photovoltaics: Research and Applications 2002, 10, 41-46.
79. Afzaal, M.; O′Brien, P. Recent developments in II-VI and III-VI semiconductors and their applications in solar cells. Journal of Materials Chemistry 2006, 16, 1597-1602.
80. Schock, H. W. Thin film photovoltaics. Applied Surface Science 1996, 92, 606-616.
81. Birkmire, R. W. Compound polycrystalline solar cells:: Recent progress and Y2 K perspective. Solar Energy Materials and Solar Cells 2001, 65, 17-28.
82. Liu, J.; Cao, G.; Yang, Z.; Wang, D.; Dubois, D.; Zhou, X.; Graff, G. L.; Pederson, L. R.; Zhang, J. G. Oriented nanostructures for energy conversion and storage. ChemSusChem 2008, 1, 676-97.
83. O′Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.
84. Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society 2001, 123, 1613-1624.
85. Nelson, J.; Chandler, R. E. Random walk models of charge transfer and transport in dye sensitized systems. Coordination Chemistry Reviews 2004, 248, 1181-1194.
86. Nissfolk, J.; Fredin, K.; Hagfeldt, A.; Boschloo, G. Recombination and Transport Processes in Dye-Sensitized Solar Cells Investigated under Working Conditions. The Journal of Physical Chemistry B 2006, 110, 17715-17718.
87. Grätzel, M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry 2005, 44, 6841-6851.
88. Grätzel, M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164, 3-14.
89. Vafaee, M.; Ghamsari, M. S. Preparation and characterization of ZnO nanoparticles by a novel sol–gel route. Materials Letters 2007, 61, 3265-3268.
90. Kar, S.; Dev, A.; Chaudhuri, S. Simple Solvothermal Route To Synthesize ZnO Nanosheets, Nanonails, and Well-Aligned Nanorod Arrays. The Journal of Physical Chemistry B 2006, 110, 17848-17853.
91. Li, Q.; Kumar, V.; Li, Y.; Zhang, H.; Marks, T. J.; Chang, R. P. H. Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions. Chemistry of Materials 2005, 17, 1001-1006.
92. Fu, M.; Zhou, J.; Xiao, Q.; Li, B.; Zong, R.; Chen, W.; Zhang, J. ZnO Nanosheets with Ordered Pore Periodicity via Colloidal Crystal Template Assisted Electrochemical Deposition. Advanced Materials 2006, 18, 1001-1004.
93. Pal, U.; Serrano, J. G.; Santiago, P.; Xiong, G.; Ucer, K. B.; Williams, R. T. Synthesis and optical properties of ZnO nanostructures with different morphologies. Optical Materials 2006, 29, 65-69.
94. Liu, J.-M. Photonic Devices. 2005.
95. Bahaa E. A. Saleh, M. C. T. Fundamentals of Photonics. 2007, 1200.
96. Nazeeruddin, M. K.; Baranoff, E.; Grätzel, M. Dye-sensitized solar cells: A brief overview. Solar Energy 2011, 85, 1172-1178.
97. Hagfeldt, A.; Graetzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chemical Reviews 1995, 95, 49-68.
98. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993, 115, 6382-6390.
99. Gondoni, P.; Ghidelli, M.; Di Fonzo, F.; Russo, V.; Bruno, P.; Martí-Rujas, J.; Bottani, C. E.; Li Bassi, A.; Casari, C. S. Structural and functional properties of Al:ZnO thin films grown by Pulsed Laser Deposition at room temperature. Thin Solid Films 2012, 520, 4707-4711.
100. Kaushik, V. K.; Ganguli, T.; Kumar, R.; Mukherjee, C.; Sen, P. K. Growth and characterization of ZnO and MgxZn1 − xO thin films by aerosol assisted chemical vapor deposition technique. Thin Solid Films 2012, 520, 3505-3509.
101. Yildiz, A.; Serin, T.; Öztürk, E.; Serin, N. Barrier-controlled electron transport in Sn-doped ZnO polycrystalline thin films. Thin Solid Films 2012, 522, 90-94.
102. Lin, S.-S.; Huang, J.-L.; Šajgalik, P. The properties of Ti-doped ZnO films deposited by simultaneous RF and DC magnetron sputtering. Surface and Coatings Technology 2005, 191, 286-292.
103. Paul, G. K.; Bandyopadhyay, S.; Sen, S. K.; Sen, S. Structural, optical and electrical studies on sol–gel deposited Zr doped ZnO films. Materials Chemistry and Physics 2003, 79, 71-75.
104. Zhu, B. L.; Xie, C. S.; Zeng, D. W.; Song, W. L.; Wang, A. H. Investigation of gas sensitivity of Sb-doped ZnO nanoparticles. Materials Chemistry and Physics 2005, 89, 148-153.
105. Li, Q.; Cheng, K.; Weng, W.; Du, P.; Han, G. Synthesis, characterization and electrochemical behavior of Sb-doped ZnO microsphere film. Thin Solid Films 2013, 544, 466-471.
106. Lin, J. C.; Peng, K. C.; Liao, H. L.; Lee, S. L. Transparent conducting Sc-codoped AZO film prepared from ZnO:Al-Sc by RF-DC sputtering. Thin Solid Films 2008, 516, 6-6.
107. Lin, J.-C.; Peng, K.-C.; Tseng, C. A.; Lee, S.-L. Deposition of Al-doped and Al, Sc-co-doped zinc oxide films by RF- and DC-sputtering of the ZnO and Al–xSc (x = 0, 0.4, 0.8 and 1.7 wt.%) targets. Surface and Coatings Technology 2008, 202, 5480-5483.
108. Hahn, N. T.; Mullins, C. B. Photoelectrochemical Performance of Nanostructured Ti- and Sn-Doped α-Fe2O3 Photoanodes. Chemistry of Materials 2010, 22, 6474-6482.
109. Pan, Z.; Zhang, P.; Tian, X.; Cheng, G.; Xie, Y.; Zhang, H.; Zeng, X.; Xiao, C.; Hu, G.; Wei, Z. Properties of fluorine and tin co-doped ZnO thin films deposited by sol–gel method. Journal of Alloys and Compounds 2013, 576, 31-37.
110. Qu, X.; Lü, S.; Jia, D.; Zhou, S.; Meng, Q. First-principles study of the electronic structure of Al and Sn co-doping ZnO system. Materials Science in Semiconductor Processing 2013, 16, 1057-1062.
111. Poziquan Formation. In Geological Formation Names of China (1866–2000), Zhang, S., Ed. Springer Berlin Heidelberg: 2009; pp 865-865.
112. Jothilakshmi, R.; Ramakrishnan, V.; Thangavel, R.; Kumar, J.; Sarua, A.; Kuball, M. Micro-Raman scattering spectroscopy study of Li-doped and undoped ZnO needle crystals. Journal of Raman Spectroscopy 2009, 40, 556-561.
113. Musić, S.; Dragčević, Đ.; Popović, S.; Ivanda, M. Precipitation of ZnO particles and their properties. Materials Letters 2005, 59, 2388-2393.
114. Chen, K. J.; Fang, T. H.; Hung, F. Y.; Ji, L. W.; Chang, S. J.; Young, S. J.; Hsiao, Y. J. The crystallization and physical properties of Al-doped ZnO nanoparticles. Applied Surface Science 2008, 254, 5791-5795.
115. Manabu, G.; Naoko, O.; Kenichi, O.; Mikio, K. Photoluminescent and Structural Properties of Precipitated ZnO Fine Particles. Japanese Journal of Applied Physics 2003, 42, 481.
116. Tian, X.; Pan, Z.; Zhang, H.; Fan, H.; Zeng, X.; Xiao, C.; Hu, G.; Wei, Z. Growth and characterization of the Al-doped and Al–Sn co-doped ZnO nanostructures. Ceramics International 2013, 39, 6497-6502.
117. Pan, Z.; Tian, X.; Wu, S.; Yu, X.; Li, Z.; Deng, J.; Xiao, C.; Hu, G.; Wei, Z. Investigation of structural, optical and electronic properties in Al–Sn co-doped ZnO thin films. Applied Surface Science 2013, 265, 870-877.
118. Park, K. C.; Ma, D. Y.; Kim, K. H. The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering. Thin Solid Films 1997, 305, 201-209.
119. Lin, J.-C.; Peng, K.-C.; Liao, H.-L.; Lee, S.-L. Transparent conducting Sc-codoped AZO film prepared from ZnO:Al–Sc by RF-DC sputtering. Thin Solid Films 2008, 516, 5349-5354.
120. Lee, J.-H.; Park, B.-O. Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method. Thin Solid Films 2003, 426, 94-99.
121. Ilican, S.; Caglar, M.; Caglar, Y. Sn doping effects on the electro-optical properties of sol gel derived transparent ZnO films. Applied Surface Science 2010, 256, 7204-7210.
122. Mazilu, M.; Tigau, N.; Musat, V. Optical properties of undoped and Al-doped ZnO nanostructures grown from aqueous solution on glass substrate. Optical Materials 2012, 34, 1833-1838.
123. Minami, T.; Kakumu, T.; Takeda, Y.; Takata, S. Highly transparent and conductive ZnO:In2O3 thin films prepared by d.c. magnetron sputtering. Thin Solid Films 1996, 290–291, 1-5.
124. Raoufi, D.; Raoufi, T. The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films. Applied Surface Science 2009, 255, 5812-5817.
125. Tsay, C.-Y.; Fan, K.-S.; Wang, Y.-W.; Chang, C.-J.; Tseng, Y.-K.; Lin, C.-K. Transparent semiconductor zinc oxide thin films deposited on glass substrates by sol–gel process. Ceramics International 2010, 36, 1791-1795.
126. Kim, Y.-S.; Tai, W.-P. Electrical and optical properties of Al-doped ZnO thin films by sol–gel process. Applied Surface Science 2007, 253, 4911-4916.
127. Pan, Z.; Tian, X.; Wu, S.; Xiao, C.; Li, Z.; Deng, J.; Hu, G.; Wei, Z. Effects of Al and Sn dopants on the structural and optical properties of ZnO thin films. Superlattices and Microstructures 2013, 54, 107-117.
128. Li, X.-L.; Wang, Z.-L.; Qin, X.-F.; Wu, H.-S.; Xu, X.-H.; Gehring, G. A. Enhancement of magnetic moment of Co-doped ZnO films by postannealing in vacuum. Journal of Applied Physics 2008, 103, 023911-023911-5.
129. Kim, J.; Kim, M.-c.; Yu, J.; Park, K. H2/Ar and vacuum annealing effect of ZnO thin films deposited by RF magnetron sputtering system. Current Applied Physics 2010, 10, S495-S498.
130. Tong, H.; Deng, Z.; Liu, Z.; Huang, C.; Huang, J.; Lan, H.; Wang, C.; Cao, Y. Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films. Applied Surface Science 2011, 257, 4906-4911.
131. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38.
132. Tseng, C.-J.; Wang, C.-H.; Cheng, K.-W. Photoelectrochemical performance of gallium-doped AgInS2 photoelectrodes prepared by electrodeposition process. Solar Energy Materials and Solar Cells 2012, 96, 33-42.
133. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. Journal of Applied Physics 2005, 98, 041301-1-041301-103.
134. Oskam, G.; Hu, Z.; Penn, R. L.; Pesika, N.; Searson, P. C. Coarsening of metal oxide nanoparticles. Physical Review E 2002, 66, 011403.
135. Bae, H. S.; Yoon, M. H.; Kim, J. H.; Im, S. Photodetecting properties of ZnO-based thin-film transistors. Applied Physics Letters 2003, 83, 5313-5315.
136. Keis, K.; Roos, A. Optical characterization of nanostructured ZnO and TiO2 films. Optical Materials 2002, 20, 35-42.
137. Noack, V.; Weller, H.; Eychmüller, A. Electron Transport in Particulate ZnO Electrodes:  A Simple Approach. The Journal of Physical Chemistry B 2002, 106, 8514-8523.
138. Jih-Jen, W.; Guan-Ren, C.; Chia-Chun, L.; Wei-Ting, W.; Jen-Sue, C. Performance and electron transport properties of TiO 2 nanocomposite dye-sensitized solar cells. Nanotechnology 2008, 19, 105702.
指導教授 林景崎、Gilles Lerondel
(Jing-chie Lin、Gilles Lerondel)
審核日期 2015-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明