博碩士論文 101331001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.226.93.209
姓名 郭士豪(Shih-hao Kuo)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 應用皮質肌肉協調性評估腦中風患者復健後之功能恢復情況
(Using Cortico-muscular coherence to evaluate the functional recovery of stroke patients in response to rehabilitation)
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
★ 使用GPU提升事件相關電位之動態因果模型的運算效能★ 基於動態因果模型之老化相關的運動網路研究
★ 應用腦電圖預測中風病人復健情況★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響
★ 基於虛擬實境復健之中風後運動網路功能性重組研究★ 應用腦電圖與相關臨床因子預測中風病人復原之研究
★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組★ 以運動指標預測復健成效暨設計復健方針
★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性★ 中風患者在復健後的大腦神經連結的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的在於藉由收取腦中風患者復健前後測的腦波訊號與肌電訊號後計算皮質肌肉協調性(Cortico-muscular Coherence;CMC),並結合現行復健上所使用的三種上肢運動功能量表(FMA、TEMPA與WMFT)來探討腦中風患者接受傳統復健和虛擬實境復健後大腦調控上肢手臂肌肉運動的情形。
本研究中共收取了17位受試者(男性:12;女性:5),平均年齡59.59±12.10歲,其中7人接受現行復健,10人接受虛擬實境復健。兩組受試者復健的療程原則上都為一周四次,一次一小時,並在六個星期內完成復健訓練療程。每位受試者進行復健前與復健後皆會進行運動評估測驗,測驗任務皆為執行上肢肩關節前屈(Shoulder Flexion)與上肢肩關節伸直(Shoulder Extension)的運動任務,並量測運動中的EEG與EMG訊號。將EEG與EMG訊號進行前處理與分段處理後計算皮質肌肉協調性並結合三種量表分數進步率進行迴歸分析。結果顯示兩組患者進行復健後只在WMFT量表分數增益與進步率上達到顯著進步,表示評估量表可能在不同復健方式的組群無法得到客觀的結果,在腦波頻譜分析中,可以發現復健後在α與β頻帶上9個電極位置FMA量表分數進步率越高,能量進步率越低,而在γ頻帶上,F3、C3、C4與P3電極位置FMA進步率越高,功率能量變化率越高,而其他電極位置則是FMA進步率越高,功率能量變化率越低趨勢,觀察到α頻帶F3、C3與P4和β頻帶F3、F4、C3與C4還有γ頻帶F3、F4、C3、C4、P3與P4電極位置TEMPA進步率越高,功率能量變化率越高的趨勢,但都未達到顯著性,此外三個頻帶上也發現9個電極位置WMFT量表分數進步率越高,能量進步率越低,也沒有達到顯著。CMC與量表分數進步率上發現斜方肌、前三角肌、中三角肌、後三角肌與肱二頭肌的C3-CMC在 FMA進步率越高,CMC變化率也越高,則表示接受復健後提升受傷腦區活化有助於中風運動功能恢復,斜方肌、中三角肌與後三角肌的C4-CMC在 FMA進步率越高,CMC變化率也越高,表示同側腦區也參與了調控,推測可能大腦調控在主要核心肌肉作用還不夠足以應付動作任務,因此活化其他肌肉收縮以提升力量來達成動作。
摘要(英) The present study aims to evaluate the functional recovery of stroke patients in response to rehabilitation by Using Cortico-muscular coherence (CMC). Specifally, we correlated three existing arm movement functional scales on rehabilitation (FMA, TEMPA and WMFT) and CMC changes after intervention to determinate the efficacy difference between the conventional and virtual reality (VR) based rehabilitation.

We recruited 17 subjects (male: 12; female: 5), the average age of 59.59 ± 12.10 years, seven of them accepted conventional rehabilitation, ten people accepted the virtual reality rehabilitation. All patients underwent a total 24 hours training program with the frequency of 1 hour a day, five days a week, and eight weeks per week. 30 channel EEG and 6 channel EMG were acquired before and after the rehabilitation training when patients did the shoulder flexion-extension using their affected hand. The CMC was computed at three different frequency bands (α: 8 ~ 15 Hz; β: 15 ~ 30 Hz; γ: 30 ~ 48 Hz). Clinical measures included FMA, TEMPA, WMFT were also conducted by the therapist pre- and post-treatment. We used regression analysis to evaluate the functional recovery with CMC and scores of clinical measures.The rmANOVA results of the outcome measurement indicated a significant effect on the intervention (p<0.001), measurement (p<0.001) and their interaction (p=0.024). We did not find a significant relation between EEG power over α and β band and FMA. However, the CMC analysis reveals that there are significant linear relation between C3 and several core muscles for moving the shoulder, including thetrapezius, anterior deltoid, middle deltoid, after deltoid and biceps in beta and gamma band. Furthermore, these CMCs are positively correlated with the functional improvement (i.e. the changes in FMA after rehabilitation). The CMC of C4 shows the similar patterns. We concluded that the increase of CMC after rehabilitation reflects the regain of control over muscles from the brain after damage.
關鍵字(中) ★ 皮質肌肉協調性
★ 中風
★ 復健機制
關鍵字(英) ★ cortico-muscular coherence
★ stroke
★ rehabilitation
論文目次 目錄
摘要 i
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1研究背景與動機 1
1-2研究目的 4
1-3論文架構 5
第二章 背景知識與文獻回顧 6
2-1腦電波圖與肌電圖 6
2-2患者復健後肌電圖與腦波圖之改變 8
2-3皮質肌肉協調性 12
第三章 研究方法與流程 14
3-1受試者資料 14
3-2虛擬實境復健療程設計 16
3-3傳統評估指標 20
3-4運動評估測驗 21
3-5生理訊號之記錄與前處理 23
3-6統計相關分析 30
第四章 研究結果 31
4-1受試者上肢運動功能量表分數 31
4-2受試者腦電圖頻譜分析 40
4-3受試者CMC與量表分數之進步率曲線估計 42
第五章 討論與結論 77
5-1量表分數分析 77
5-2腦電波頻譜分析 78
5-3 CMC與FMA之進步率曲線估計 79
5-4結論 81
第六章 未來展望 82
第七章 參考文獻 83
附錄 88
參考文獻 [1] Mayo N.E. , Wood-Dauphinee S., Côté R., Durcan L., and Carlton J., Activity, participation, and quality of life 6 months poststroke, Arch Phys Med Rehabil, vol. 83, no. 8, pp. 1035–1042, Aug. 2002.
[2] Jönsson A.-C., Lindgren I., Hallström B., Norrving B., and Lindgren A., Determinants of quality of life in stroke survivors and their informal caregivers, Stroke, vol. 36, no. 4, pp. 803–808, Apr. 2005.
[3] Turolla A., Dam M., Ventura L., Tonin P., Agostini M., Zucconi C., Kiper P., Cagnin A., and Piron L., Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial, J Neuroeng Rehabil, vol. 10, p. 85, 2013.
[4] Laver K. E., George S., Thomas S., Deutsch J. E., and Crotty M., Virtual reality for stroke rehabilitation, Cochrane Database Syst Rev, no. 9, p. CD008349, 2011.
[5] Gresham G, Duncan P, Stason W, Adams H, Adelman A, Alexander D, Bishop D, Diller L, Donaldson N, Granger C, et al. Post-Stroke Rehabilitation.Rockville, MD: U.S. Department of Health and Human Services. Public Health Service, Agency for Health Care Policy and Research; 1995.
[6] Cramer SC. Repairing the human brain after stroke. II. Restorative therapies, Ann Neurol 63:549–560, 2008.
[7] Carey J, Kimberley T, Lewis S, Auerbach E, Dorsey L, Rundquist P, Ugurbil K. Analysis of fMRI and finger tracking training in subjects with chronic stroke.Brain., 125:773–788, 2002.
[8] Witham C.L., Riddle C.N., Baker M.R., Baker S.N. Contributions of descending and ascending pathways to corticomuscular coherence in humans. J. Physiol, 589:3789–3800, 2011.
[9] Tudor M, Tudor L, Tudor KI,Hans Berger (1873-1941)--the history of electroencephalography, Acta Med Croatica, 2005, 59(4):307-313
[10] S. Sanei and J. A. Chambers, EEG Signal Processing, John Wiley & Sons, New York, NY, USA, 2007.
[11] Criswell E., Cram′s Introduction to Surface Electromyography Second Edition, Sudbury: Jones and Bartlett, Part I, 2011
[12] Langhorne P., Medical Complications After StrokeA Multicenter Study, Stroke, 31: 1223-1229,2000
[13] Heit J., Current management of acute symptomatic deep vein thrombosis. American journal of cardiovascular drugs: drugs, devices, and other interventions, 1:45-50, 2001
[14] E Stålberg, PR Fawcett ,Macro EMG in healthy subjects of different ages.,J Neurol Neurosurg Psychiatry 1982;45:870-878 doi:10.1136
[15] Darling WG, Cole KJ, Muscle activation patterns and kinetics of human index finger movements. J Neurophysiol. 1990 May; 63(5):1098-108.
[16] Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton Hewer R, Wade DT, Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial. J Neurol Neurosurg Psychiatry. 1992 Jul; 55(7):530-5.
[17] Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D, EXCITE Investigators Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial.JAMA. 2006 Nov 1; 296(17):2095-104.
[18] Merians AS, Poizner H, Boian R, Burdea G, Adamovich S, Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke?, Neurorehabil Neural Repair. 2006 Jun; 20(2):252-67.
[19] Tenore F, Ramos A, Fahmy A, et al. Towards the control of individual fingers of a prosthetic hand using surface EMG signals. Conf Proc IEEE Eng Med Biol Soc 2007. 2007:6146–6149.
[20] Tenore F, Ramos Murguialday, A FahmyA, Acharya S, et al. Decoding of individuated finger movements using surface electromyography. IEEE Trans Biomed Eng. 2009;56:1427–1434.
[21] Parker P, Englehart K, Hudgins B. Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol. 2006;16:541–548.
[22] Cipriani C, Zaccone F, Micera S, Carrozza M. On the shared control of an EMG-controlled prosthetic hand: Analysis of user-prosthesis interaction. IEEE Trans Robot. 2008;24:170–184.
[23] Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control.IEEE Trans Biomed Eng. 2003;50:848–854.
[24] Ander Ramos-Murguialday,Eliana García-Cossio, Armin Walter, Woosang Cho, Doris Broetz, Martin Bogdan, Leonardo G Cohen, and Niels Birbaumer, Decoding upper limb residual muscle activity in severe chronic stroke, Ann Clin Transl Neurol. 2015 Jan; 2(1): 1–11.
[25] d′Avella A, Portone A, Fernandez L, Lacquaniti F,Control of fast-reaching movements by muscle synergy combinations. J Neurosci. 2006 Jul 26; 26(30):7791-810.
[26] Bizzi E, Cheung VC, d′Avella A, Saltiel P, Tresch M,Combining modules for movement. Brain Res Rev. 2008 Jan; 57(1):125-33.
[27] Cheung VC, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E, Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci U S A. 2009 Nov 17; 106(46):19563-8.
[28] Cheung VC, Turolla A, Agostini M, Silvoni S, Bennis C, Kasi P, Paganoni S, Bonato P, Bizzi E, Muscle synergy patterns as physiological markers of motor cortical damage. Proc Natl Acad Sci U S A. 2012 Sep 4; 109(36):14652-6.
[29] Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain. 1995 Apr; 118 ( Pt 2):495-510.
[30] Cirstea MC, Levin MF, Compensatory strategies for reaching in stroke. Brain. 2000 May; 123 ( Pt 5):940-53.
[31] García-Cossio E., Cortex Integrity Relevance in Muscle Synergies in Severe Chronic Stroke, Front Hum Neurosci. 2014; 8: 744.
[32] A. Turton a,c, S. Wroe b, N. Trepte b, C. Fraser% R.N. Lemon c
Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke
Electroencephalography and clinical Neurophysiology 101 (1996) 316-328
[33]Kukulka CG, Clamann HP. Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Res. 1981 Aug 24;219:45–55.
[34] Laura C. Miller, Student Member, IEEE, Christopher K. Thompson,Francesco Negro, C. J. Heckman, Dario Farina, Senior Member, IEEE, andJulius P.A. Dewald, Member, IEEE, High-density surface EMG decomposition allows for recording of motor unit discharge from proximal and distal flexion synergy muscles simultaneously in individuals with stroke, Conf Proc IEEE Eng Med Biol Soc. 2014; 2014: 5340–5344.
[35] Connelly L., Jia Y., Toro M. L., Stoykov M. E., Kenyon R. V., andKamper D. G., “A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke,” IEEE Trans Neural Syst Rehabil Eng, vol. 18, no. 5, pp. 551–559, Oct. 2010.
[36] Ward N. S., Brown M. M., Thompson A. J., Neural correlates of outcome after stroke: a cross-sectional fMRI stud, Brain, vol. 126, no. Pt 6, pp. 1430–1448, Jun. 2003.
[37] Baker S. N., Olivier E., Lemon R. N. (1997). Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J. Physiol. 501(Pt. 1), 225–241. 10.1111/j.1469-7793.1997.225bo.x
[38] Jensen O., Goel P., Kopell N., Pohja M., Hari R., Ermentrout B. (2005). On the human sensorimotor-cortex beta rhythm: sources and modeling. Neuroimage 26, 347-355.10.1016/j.neuroimage.2005.02.008
[39] Hall S. D., Barnes G. R., Furlong P. L., Seri S., Hillebrand A. (2010). Neuronal network pharmacodynamics of GABAergic modulation in the human cortex determined using pharmaco-magnetoencephalography. Hum. Brain Mapp. 31, 581–594. 10.1002/hbm.20889
[40] Rossiter H. E., Boudrias M. H., Ward N. S. (2014). Do movement-related beta oscillations change after stroke? J. Neurophysiol. 112, 2053–2058. 10.1152/jn.00345.2014
[41] Finnigan S., van Putten M. J. (2013). EEG in ischaemic stroke: quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management. Clin. Neurophysiol.124, 10–19. 10.1016/j.clinph.2012.07.003
[42] Murase N., Duque J., Mazzocchio R., Cohen L. G. (2004).Influence of interhemispheric interactions on motor function in chronic stroke. Ann. Neurol. 55, 400–409.
[43] Grefkes C., Fink G. R. (2014). Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 13, 206–216. 10.1016/s1474-4422(13)70264-3
[44] Sumire Sato, Til Ole Bergmann, and Michael R. Borich, Opportunities for concurrent transcranial magnetic stimulation and electroencephalography to characterize cortical activity in stroke, Front Hum Neurosci. 2015; 9: 250.
[45] Conway et al.,B.A. Conway, D.M. Halliday, S.F. Farmer, U. Shahani, P. Maas, A.I. Weir, J.R. Rosenberg Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man, Journal of Physiology (London), 489 (Pt. 3) (1995), pp. 917–924
[46] Halliday et al., D.M. Halliday, B.A. Conway, S.F. Farmer, J.R. Rosenberg, Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans,Neuroscience Letters, 241 (1998), pp. 5–8
[47] Grosse P., Cassidy M.J., Brown P.,EEG–EMG, MEG–EMG and EMG–EMG frequency analysis: physiological principles and clinical applications Clinical Neurophysiology, Volume 113, Issue 10, October 2002, Pages 1523–1531
[48] Kilner J.M., Baker S.N., Salenius S., Hari R., Lemon R.N. Human cortical muscle coherence is directly related to specific motor parameters. Journal of Neuroscience. 2000;20:8838–8845.
[49] Baker S.N., Olivier E., Lemon R.N. Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. Journal of Physiology (London)1997;501(Pt. 1):225–241.
[50] Brown P., Salenius S., Rothwell J.C., Hari R. Cortical correlate of the piper rhythm in humans. Journal of Neurophysiology.1998;80:2911–2917.
[51] Omlor W., Patino L., Gamma-range corticomuscular coherence during dynamic force output. NeuroImage. 2007;34:1191–1198.
[52] Gerloff C., Braun C., Staudt M., Hegner Y.L., Coherent corticomuscular oscillations originate from primary motor cortex: evidence from patients with early brain lesions. Human Brain Mapping.2006;27:789–798.
[53] Fang Y., Daly J.J., Sun J., Hvorat K., Fredrickson E., Pundik S., Sahgal V., Yue G.H. Functional corticomuscular connection during reaching is weakened following stroke. Clinical Neurophysiology. 2009;120:994–1002.
[54] Omlor W., Patino L., Gamma-range corticomuscular coherence during dynamic force output. NeuroImage. 2007;34:1191–1198.
[55] Engel A.K., Fries P., Singer W. Dynamic predictions: oscillations and synchrony in top–down processing. Nature Reviews Neuroscience. 2001;2:704–716.
[56] Tallon-Baudry C., Bertrand O. Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences. 1999;3:151–162.
[57] Rossiter HE, Eaves C, Davis E, Boudrias MH, Park CH, Farmer S,Changes in the location of cortico-muscular coherence following stroke.Neuroimage Clin. 2012 Nov 13;2:50-5. doi: 10.1016/j.nicl.2012.11.002. Collection 2012.
[58] Meng F, Tong KY, Chan ST, Wong WW, Lui KH, Tang KW, Gao X, Cerebral plasticity after subcortical stroke as revealed by cortico-muscularcoherence, SIEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):234-43. doi: 10.1109/TNSRE.2008.2006209. Epub 2008 Sep 19.
[59] Tatsuya Mima, MD; Keiichiro Toma, MD; Benjamin Koshy, BS; Mark Hallett, MD, Coherence Between Cortical and Muscular Activities After Subcortical Stroke, Stroke,2001; 32: 2597-2601
指導教授 陳純娟(Chun-chuan Chen) 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明