博碩士論文 101331004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.238.190.82
姓名 徐永倫(YUNG-LUN HSU)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 具呼吸補償功能之超音波影像輔助機械手臂HIFU腫瘤燒灼追蹤系統
相關論文
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 整合可調式阻力之手足復健機研究
★ 應用於肝腫瘤治療之超音波影像輔助機械臂HIFU燒灼實驗系統★ 顱顏整型手術用植入物之設計與製作
★ 電腦輔助骨科手術用規劃及導引系統★ 遠端遙控機械手臂腹腔鏡手術系統
★ 頭部CT與MR影像之融合★ 手術用影像導引機械人定位及鑽孔系統
★ 機器人校正與醫學影像導引定位應用★ 顱顏手術用規劃及導引系統
★ 醫學用超音波影像導引系統★ 應用3D區域成長法於腦部磁共振影像之分割
★ 腦部手術用導引系統之方位校準及腦瘤影像分割★ 超音波影像即時震波導引
★ 腫瘤偵測與顱顏骨骼重建★ 骨科手術用C-arm影像輔助規劃及導引系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 肝臟腫瘤是華人常見的疾病,早期診斷與治療是避免肝腫瘤惡化很重要的措施。近年來快速發展的高強度聚焦超音波(HIFU)以高溫方式破壞腫瘤細胞,此一對病患傷害最小的無創熱治療方式極具發展潛力。因為病人的呼吸會造成肝臟腫瘤位移,若從人體呼吸的生理反應,例如胸口起伏、呼吸氣體流量,推算並預測肝腫瘤位置,將可以達到與呼吸同步治療,提昇治療準確度。本研究目標是基於實驗室現有的超音波影像輔助機器手臂定位HIFU技術,發展一具備呼吸補償功能之超音波影像輔助機械手臂HIFU腫瘤燒灼追蹤系統。
研究依據三位實驗者肝臟血管位移與胸口起伏量的實驗值,設計了一組機構以模擬人體在呼吸狀態下肝腫瘤位移與胸口起伏關係,並在不同的胸口起伏狀態下,以超音波掃描腫瘤假體、重建三維腫瘤模型並計算其空間位置,之後將各腫瘤空間位置用多項式函數擬合以模擬腫瘤位移軌跡,並建立模擬呼吸起伏的雷射量測値與腫瘤位移軌跡的對應關係。在完成機械手臂、光學式定位器及三維腫瘤模型對位後,機械手臂追蹤系統即依據雷射量測值與自動控制HIFU聚焦點依循腫瘤位移軌跡移動,過程中並就運動延遲時間進行補償,以達到與呼吸同步的精確腫瘤燒灼治療。
腫瘤假體燒灼實驗分成靜態燒灼與動態燒灼:靜態單點燒灼誤差約為1mm,三維模型切面多點燒灼結果顯示可均勻地完成整個假體切面;動態單點追蹤燒灼實驗結果則顯示延遲時間補償後,追蹤誤差與腫瘤位移軌跡曲線擬合誤差分別為0.65±0.31mm和1.72±1.26mm。切面燒灼實驗追蹤誤差與腫瘤位移軌跡曲線擬合誤差分別為0.85±0.39mm和3.04±1.24mm。其中軌跡曲線擬合誤差大,主因是腫瘤取樣位置數目偏低所造成的。
摘要(英) Liver tumor is a common disease in Chinese society. Early diagnosis and treatment of liver tumor are highly recommended to avoid worsening. High Intensity Focused Ultrasound (HIFU) ablation is being increasingly developed and high potential as a non-invasive treatment option for liver cancer. Displacement of liver tumor occurs due to the patient’s respiratory, which can be predicted based on a respiratory external signal, e.g., chest displacement or air flow of spirometer. Therefore, it is potential to treat liver tumor synchronously. This project is aimed to develop an ultrasound assisted robotic HIU ablation system with respiratory movement compensation.
According to the synchronous measurements of displacement of hepatic vessel and chest displacement of three human subjects, an experimental mechanism is designed to simulate the relation between liver tumor movement and chest displacement due to respiratory. Ultrasound scan of the tumor phantom is done in six different respiratory statuses. The sequential sonograms are used to reconstruct the three-dimensional tumor model and compute its location. Then, the trajectory of tumor movement is synthesized by using cubic polynomials and the correlation between the laser measurement value and tumor movement is determined. After the registration among the robotic manipulator, optic tracker and tumor model has been completed, the robot manipulator can automatically control the HIFU focus point to track the trajectory of tumor targets and to ablate the tumor targets synchronizing with respiration.
The experiments are separated into static and dynamic ablations of tumor phantom. The results of static ablation experiments show that the average distance error in single-point ablation was about 1mm and the cross-cut plane of tumor phantom can be ablated completely. As to dynamic ablation experiments with time-delay compensation, the results show that the average distance errors of single-point tracking and trajectory curve fitting are 0.65±0.31mm and 1.72±1.26mm respectively. The average distance errors of cross-cut plane tracking and trajectory curve fitting are 0.85±0.39mm and 3.04±1.24mm respectively. The large distance error of trajectory curve fitting is because only six scanning data of tumor phantom is used to synthesize the trajectory
關鍵字(中) ★ 高強度聚焦超音波
★ 超音波影像輔助導航系統
★ 機器人
★ 呼吸同步追蹤
關鍵字(英) ★ HIFU
★ Ultrasound assisted navigation system
★ Robotics
★ Real-time tracking
論文目次 致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第1章 緒論 1
1-1 研究動機 1
1-1-1 肝腫瘤目前治療方法 1
1-1-2 呼吸對腫瘤治療影響 2
1-1-3 呼吸運動肝腫瘤治療方法 3
1-2 文獻回顧 5
1-2-1 呼吸訊號擷取方法 5
1-2-2 HIFU應用於呼吸研究 6
第2章 系統架構與流程 10
2-1 硬體架構 10
2-1-1 光學式定位器 11
2-1-2 超音波機 12
2-1-3 電腦與影像擷取卡 12
2-1-4 雷射測距儀 12
2-1-5 機械手臂與控制器 13
2-1-6 HIFU設備 13
2-1-7 蛋白仿體 14
2-2 軟體架構 15
2-3 系統作業流程 15
第3章 研究方法 17
3-1 座標系定義 17
3-1-1 座標系統轉換 18
3-2 超音波影像註冊 20
3-2-1 座標系關係與原理 20
3-3 光學定位器與機械手臂校正 22
3-3-1 模擬HIFU尖點與方位校正 22
3-3-2 機械手臂與光學定位器座標轉換關係 23
3-3-3 機械手臂末端載具角度校正 25
3-4 影像處理與三維重建 26
3-4-1 三維腫瘤重切與路徑規劃 27
3-5 模擬呼吸機構設計 29
3-5-1 凸輪外型設計 29
3-5-2 假體運動位移 30
3-6 機器手臂同步追蹤 31
3-6-1 不同呼吸狀態下腫瘤座標系之間的座標轉換 31
3-6-2 機器手臂補償追蹤 34
第4章 實驗結果與討論 36
4-1 呼吸胸口起伏與肝臟位移關係 37
4-2 機械手臂與光學定位器座標系註冊誤差實驗 40
4-3 腫瘤點群輪廓對位實驗 42
4-4 HIFU燒灼假體靜態實驗 45
4-4-1 目標點燒灼 45
4-4-2 三維重建切面規劃燒灼 47
4-5 HIFU燒灼假體動態實驗 49
4-5-1 模擬目標點追蹤 49
4-5-2 三維重建切面燒灼 56
第5章 結論與未來展望 61
參考文獻 63
參考文獻 [1]. S.A. Sapareto, W.C. Dewey, "Thermal dose determination in cancer therapy." International Journal of Radiation Oncology Biology Physics, vol. 10, pp. 787-800, 1984.
[2]. J.L. Foley, J.W. Little, F.L. Starr 3rd, et al., "Image-guided HIFU neurolysis of peripheral nerves to treat spasticity and pain." Ultrasound Med Biol, vol. 30, pp. 1199–1207, 2004.
[3]. M.V. Siebenthal, Analysis and modelling of respiratory liver motion using 4DMRI., Hartung-Gorre Verlag, Konstanz, 2008.
[4]. S.C. Davies, A.L. Hill, R.B. Holmes, M. Halliwell, et al., "Ultrasound quantitation of respiratory organ motion in the upper abdomen." The British Journal of Radiology, vol. 67, pp. 1096-1102, 1994.
[5]. R. Song, A. Tipirneni, P. Johnson, et al., "Evaluation of respiratory liver and kidney movements for MRI navigator gating." Journal of Magnetic Resonance Imaging, vol. 33, pp. 143-148, 2011.
[6]. D. Ionascu, S.B. Jiang, S. Nishioka, et al., "Internal-external correlation investigations of respiratory induced motion of lung tumors." Medical Physics, vol. 34, pp. 3893-3903, 2007.
[7]. R.I. Berbeco, S. Nishioka, H. Shirato, et al., "Residual motion of lung tumors in end-of-inhale respiratory gated radiotherapy based on external surrogates." Medical Physics, vol. 50, pp. 3655-3667, 2005.
[8]. P.C. Chi, P. Balter, D. Luo, et al., "Relation of external surface to internal tumor motion studied with cine CT." Medical Physics, vol. 33, pp. 3116-3123, 2006.
[9]. Y. Otani, I. Fukuda, N. Tsukamoto, et al., "A comparison of the respiratory signals acquired by different respiratory monitoring systems used in respiratory gated radiotherapy." Medical Physics, vol. 37, pp.6178-6186, 2010.

[10]. J.D. Hoisak, K.E. Sixel, R. Tirona, et al., "Correlation of lung tumour motion with external surrogate indicators of respiration." International Journal of Radiation Oncology Biology Physics, vol. 60, pp. 1298–1306, 2004.
[11]. Y. Cui, J.G. Dy, G.C. Sharp, et al., "Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers." Physics in Medicine and Biology, vol. 52, pp. 6229-6242, 2007.
[12]. L.I. Cervino, A.K. Chao, A. Sandhu, et al., "The diaphragm as an anatomic surrogate for lung tumor motion." Physics in Medicine and Biology, vol. 54, pp. 3529-3541, 2009.
[13]. Y. Seppenwoolde, R. Berbeco, S. Nishioka, et al., "Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study, " Medical Physics, vol. 34, pp. 2774-2784, 2007.
[14]. Y.S. Kim, H. Trillaud, H. Rhim, et al., "MR Thermometry Analysis of Sonication Accuracy and Safety Margin of Volumetric MR Imaging–guided High-Intensity Focused Ultrasound Ablation of Symptomatic Uterine Fibroids," Radiology, vol. 265, pp. 627-637, 2012.
[15]. E.J. Rijkhorst, I. Rivens, G. Haar, et al., "Effects of respiratory liver motion on heating for gated and model-based motion-compensated high-intensity focused ultrasound ablation." Medical Image Computing and Computer-Assisted Intervention, vol. 14, pp. 605-612, 2011.
[16]. A.B. Holbrook, P. Ghanouni, J.M. Santos, et al., "Respiration based steering for High Intensity Focused Ultrasound liver ablation." Magnetic Resonance in Medicine, vol. 71, pp. 797–806, 2014.
[17]. I. Sakuma, Y. Takai, E. Kobayashi, et al., "Navigation of High Intensity Focused Ultrasound Applicator with an Integrated Three-Dimensional Ultrasound Imaging System." MICCAI 2002, 5th International Conference, vol. 2489, pp. 133-139, 2002.

[18]. J. Seo, N. Koizumi, T. Funamoto, et al., "Visual servoing for a US-guided therapeutic HIFU system by coagulated lesion tracking: a phantom study." The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 7, pp. 237-247, 2011.
[19]. Y.S. Tung, H.L. Liu, C.C. Wu, et al., "Contrast-agent-enhanced ultrasound thermal ablation," Ultrasound Med Biol, vol. 32, pp. 1103-1110, 2006.
[20]. K. Takegami, Y. Kaneko, T. Watanabe, et al., "Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound," Ultrasound Med Biol, vol. 30, pp. 1419-1422, 2004.
[21]. 廖英吟,「超音波影像定位」, 碩士論文,中央大學 生醫工程研究所,2011。
[22]. 許家豪,「應用於HIFU 熱治療之超音波影像輔助機械手臂定位系統」, 碩士論文,中央大學 生物醫學工程研究所,2014。
[23]. 安治宇,「應用於肝腫瘤治療之超音波影像輔助機械手臂HIFU燒灼系統」,博士資格考,中央大學 機械工程研究所,2013。
[24]. 顏子茜,「以達治療溫度為基礎的高強度聚焦超聲波燒灼路徑規劃」,碩士論文,中央大學生物醫學工程研究所,2014。
指導教授 曾清秀(Ching-Shiow Tseng) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明