博碩士論文 101331006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.94.21.209
姓名 呂億綸(Yi-Lun Lu)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 運用腦電波研究中風病人的復健成效 與持續情形
(Using EEG to evaluate the stroke rehabilitation efficacy : a longitudinal study)
相關論文
★ 足弓指標參數之比較分析★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
★ 使用GPU提升事件相關電位之動態因果模型的運算效能★ 基於動態因果模型之老化相關的運動網路研究
★ 應用腦電圖預測中風病人復健情況★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響
★ 基於虛擬實境復健之中風後運動網路功能性重組研究★ 應用腦電圖與相關臨床因子預測中風病人復原之研究
★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組★ 以運動指標預測復健成效暨設計復健方針
★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性★ 中風患者在復健後的大腦神經連結的變化
★ 運用N-back任務和空間工作記憶訓練分析神經相關性能之ERP和DCM研究★ 應用皮質肌肉協調性評估腦中風患者復健後之功能恢復情況
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 虛擬實境復健近來受到許多的注目,但是其復健功效卻是眾說紛紜,本研究的目的在於運用EEG訊號搭配定性定量的動態因果模型來研究中風病人在復健之後,復健的成效以及復健後一個月復健成效是否持續,並比較兩種復健的方式-虛擬實境以及傳統復健的差異。

本研究為縱貫性研究(longitudinal study),採用EEG訊號搭配定性定量的動態因果模型來研究大腦內運動神經網路因應不同復健方式改變的情形與其效果持續的狀況。本研究招募中風病人30人(女性8人,男性22),隨機的情狀下分成study 以及control 組,其中16人做虛擬實境(Study),另14人做傳統復健(Control),皆為24小時復健療程。我們收集復健前後和追蹤一個月後的EEG與臨床量表復原成效。研究結果顯示,以傳統臨床量表來看復健的效果,虛擬實境與傳統復健皆有顯著的復健療效,且都可以持續至少復健完一個月,驗證虛擬實境復健確有療效。 EEG與動態因果模型的分析結果發現兩組病患在後測時皆展現出跟健康正常人類似的大腦連結狀況,但是到了追蹤時,卻趨向於同側優勢,其結果指向病人受傷的大腦為了要能與年輕正常大腦相同程度的運動,必須活化更多的大腦皮質來參與工作達到目的,此結果研究在兩組病患間並無差異,顯示定性上來說,虛擬實境復健所誘發之神經網路重組與傳統無異。但是如果以大腦連結的情形來探討復健方法所造成的差異時,我們發現傳統復健會使大腦神經功能趨向於健側,以健側來輔助患側達到中風前的功能,而虛擬實境復健則會刺激兩側的腦區;此外,在追蹤一個月後,大腦會有整體連結強度減弱的情況,顯示虛擬實境復健對於健側輔助患側的機制減少。我們研究的結果顯示,運用客觀定量的腦波與神經網路改變分析,有較高的敏感度,可以更進一步探討大腦網路改變的機制,增進我們對大腦復原歷程的了解。

摘要(英) Virtual reality based rehabilitation has drawn a lot of attention recently but the efficacy of it is still under debate. In this study, we set up to test if there is any difference of rehabilitation efficacy between convention and VR based intervention. Specifically, we examine whether the efficacy of the two intervention changes with time by using EEG and dynamic causal modelling for induced response (DCM_IR).

This is a prospective study. 30 subjects (8 females, 22males) were recruited and divide randomly into either VR (study) or conventional (control) training group, resulting in 16 and 14 in the study and control group, respectively. All subjects underwent a total 24 hours training program with the frequency of 1 hour a day, five days a week. 30 channel EEG were measured three times at pre-(before rehabilitation) , post- ( after rehabilitation ) intervention and one month after as the follow-up when patients performed either the shoulder or elbow flexion-extension using their affected hand. Clinical measures included FMA, TEMPA, WOLF were also conducted followed EEG measurement. The EEG data were pre-processed and then entered DCM_IR for network identification. Six plausible models, comprising bilateral primary motor cortex (M1), premotor cortex(PM) and (supplementary motor area) SMA, were tested and Bayesian model selection (BMS) was used to selected the model.

There has a significant effect on the efficacy of both groups, and this treatement effect can last at least one month, indicating the effectiveness of VR based intervention. The Bayesian Model Selection (BMS) identified the model with ipsilesional M1 dominating the network structure for both groups after rehab, suggesting that the strategy used by the brain for functional restoration is identical: to be as normal as before, irrelevant to the means of intervention. However, the best model switched into a model with more contralesional M1 engaged in the network structure for both groups at follow-up, indicating the compensation mechanism occurred after stopping rehab training. Qualitatively, there has no difference on the best model between two groups. In terms of the alternations of motor network after rehabilitation, the contralesional hamisphere engaged more for moving the paretic hand in the control group while, in the study, the activation patterns were more bilateral. Nevertheless, the overall coupling strength decrease in both groups at follow-up. Our result puts forward our understanding of the recovery process after stroke.

關鍵字(中) ★ 動態因果模型
★ 中風
★ 復健方式
★ 虛擬實境復健系統
關鍵字(英) ★ dynamic casual modeling
★ stroke
★ rehabilitation
★ virtual reality system
論文目次 摘要 i

Abstract iii

目錄 v

圖目錄 vii

表目錄 viii

第一章 緒論 1

1-1 研究背景與動機 1

1-2 研究目的 2

第二章 文獻回顧 3

2-1中風評估指標 3

2-2中風復健方法 5

2-3中風復原的大腦網路連結 6

2-4 動態因果模型 7

2-4-1功能性連結與有效性連結 8

2-4-2誘發響應的動態因果模型 9

2-4-3線性/非線性效應 11

第三章 實驗方法 13

3-1資料來源 13

3-2資料處理 18

3-3 DCM定義特徵 20

第四章 研究結果 24

4-1 傳統量表的統計 24

4-2 傳統量表的統計顯著差異 29

4-2-1復健前後以及追蹤各量表的分數差異 29

4-2-2復原療效是否會有復健方式的差異 30

4-2-3復健的效果是否一個月後持續 31

4-2-4大腦一開始的損害程度是否會影響進步的幅度 31

4-3 復健前後以及追蹤DCM模組的變化 32

4-4 由DCM探討大腦連結復健前後以及追蹤變化 34

第五章 討論 36

5-1 以傳統量表探討復健成效 36

5-2大腦連結在復健前後以及追蹤變化 36

第六章 結論及未來展望 38

第七章 參考文獻 40

第八章 附錄 44

參考文獻 1. Dennis, M.S., et al., Long-term survival after first-ever stroke: the Oxfordshire Community Stroke Project. Stroke, 1993. 24: p. 796-796.

2. Ferrucci, L., et al., Recovery of functional status after stroke. A postrehabilitation follow-up study. Stroke, 1993. 24(2): p. 200-205.

3. Wilkinson, P.R., et al., A long-term follow-up of stroke patients. Stroke, 1997. 28(3): p. 507-512.

4. Wade, D.T., et al., Physiotherapy intervention late after stroke and mobility. Bmj, 1992. 304(6827): p. 609-613.

5. Turolla, A., et al., Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil, 2013. 10: p. 85.

6. Denti, L., M. Agosti, and M. Franceschini, Outcome predictors of rehabilitation for first stroke in the elderly. European journal of physical and rehabilitation medicine, 2008. 44(1): p. 3-11.

7. Henderson, A., N. Korner-Bitensky, and M. Levin, Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Topics in stroke rehabilitation, 2007. 14(2): p. 52-61.

8. Kwon, J.-S., et al., Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial. NeuroRehabilitation, 2011. 31(4): p. 379-385.

9. Ward, N., et al., Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain, 2003. 126(11): p. 2476-2496.

10. Gladstone, D.J., C.J. Danells, and S.E. Black, The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabilitation and neural repair, 2002. 16(3): p. 232-240.

11. Fugl-Meyer, A.R., et al., The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian journal of rehabilitation medicine, 1974. 7(1): p. 13-31.

12. Duncan, P.W., M. Propst, and S.G. Nelson, Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Physical therapy, 1983. 63(10): p. 1606-1610.

13. Boissy, P., et al., Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clinical rehabilitation, 1999. 13(4): p. 354-362.

14. Desrosiers, J., et al., Validity of the TEMPA: a measurement instrument for upper extremity performance. OTJR: Occupation, Participation and Health, 1994. 14(4): p. 267-281.

15. Desrosiers, J., et al., Development and reliability of an upper extremity function test for the elderly: the TEMPA. Canadian Journal of Occupational Therapy, 1993. 60(1): p. 9-16.

16. Desrosiers, J., et al., Upper extremity performance test for the elderly (TEMPA): normative data and correlates with sensorimotor parameters. Archives of physical medicine and rehabilitation, 1995. 76(12): p. 1125-1129.

17. Strand, T., et al., A non-intensive stroke unit reduces functional disability and the need for long-term hospitalization. Stroke, 1985. 16(1): p. 29-34.

18. Kunkel, A., et al., Constraint-induced movement therapy for motor recovery in chronic stroke patients. Archives of physical medicine and rehabilitation, 1999. 80(6): p. 624-628.

19. Johansson, B.B., Brain plasticity and stroke rehabilitation The Willis lecture. Stroke, 2000. 31(1): p. 223-230.

20. Coleman, C., et al., Effect of pharmacological therapies for stroke prevention on major gastrointestinal bleeding in patients with atrial fibrillation. International journal of clinical practice, 2012. 66(1): p. 53-63.

21. Sirtori, V., et al., Constraint‐induced movement therapy for upper extremities in stroke patients. The Cochrane Library, 2009.

22. Murase, N., et al., Influence of interhemispheric interactions on motor function in chronic stroke. Annals of neurology, 2004. 55(3): p. 400-409.

23. Mehrholz, J., et al., Electromechanical and robot‐assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. The Cochrane Library, 2012.

24. Laver, K., et al., Virtual reality for stroke rehabilitation. Stroke, 2012. 43(2): p. e20-e21.

25. Saposnik, G. and M. Levin, Virtual reality in stroke rehabilitation a meta-analysis and implications for clinicians. Stroke, 2011. 42(5): p. 1380-1386.

26. Wade, D.T., V.A. Wood, and R.L. Hewer, Recovery after stroke--the first 3 months. Journal of Neurology, Neurosurgery & Psychiatry, 1985. 48(1): p. 7-13.

27. Skilbeck, C.E., et al., Recovery after stroke. Journal of Neurology, Neurosurgery & Psychiatry, 1983. 46(1): p. 5-8.

28. Anderson, T., et al., Stroke rehabilitation: evaluation of its quality by assessing patient outcomes. Archives of physical medicine and rehabilitation, 1978. 59(4): p. 170-175.

29. ANDREWS, K., et al., The recovery of the severely disabled stroke patient. Rheumatology, 1982. 21(4): p. 225-230.

30. Dombovy, M.L., et al., Disability and use of rehabilitation services following stroke in Rochester, Minnesota, 1975-1979. Stroke, 1987. 18(5): p. 830-836.

31. Calautti, C., et al., Displacement of primary sensorimotor cortex activation after subcortical stroke: a longitudinal PET study with clinical correlation. Neuroimage, 2003. 19(4): p. 1650-1654.

32. Calautti, C., et al., Dynamics of Motor Network Overactivation After Striatocapsular Stroke A Longitudinal PET Study Using a Fixed-Performance Paradigm. Stroke, 2001. 32(11): p. 2534-2542.

33. Marshall, R.S., et al., Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke, 2000. 31(3): p. 656-661.

34. Grefkes, C., et al., Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage, 2010. 50(1): p. 233-242.

35. Johansen-Berg, H., et al., The role of ipsilateral premotor cortex in hand movement after stroke. Proceedings of the National Academy of Sciences, 2002. 99(22): p. 14518-14523.

36. Feydy, A., et al., Longitudinal study of motor recovery after stroke recruitment and focusing of brain activation. Stroke, 2002. 33(6): p. 1610-1617.

37. Grefkes, C. and N.S. Ward, Cortical Reorganization After Stroke How Much and How Functional? The Neuroscientist, 2013: p. 1073858413491147.

38. Turton, A., et al., Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 1996. 101(4): p. 316-328.

39. Netz, J., T. Lammers, and V. Homberg, Reorganization of motor output in the non-affected hemisphere after stroke. Brain, 1997. 120(9): p. 1579-1586.

40. Chen, C., S.J. Kiebel, and K.J. Friston, Dynamic causal modelling of induced responses. Neuroimage, 2008. 41(4): p. 1293-1312.

41. Friston, K.J., Functional and effective connectivity in neuroimaging: a synthesis. Human brain mapping, 1994. 2(1-2): p. 56-78.

42. Friston, K., et al., Functional connectivity: the principal-component analysis of large (PET) data sets. Journal of cerebral blood flow and metabolism, 1993. 13: p. 5-5.

43. Aertsen, A. and H. Preissl, Dynamics of activity and connectivity in physiological neuronal networks. Nonlinear dynamics and neuronal networks, 1991. 2: p. 281-301.

44. Grefkes, C., et al., Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Annals of neurology, 2008. 63(2): p. 236-246.

45. Rehme, A.K., et al., The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cerebral cortex, 2010: p. bhq140.

46. Wang, L.E., et al., Noradrenergic enhancement improves motor network connectivity in stroke patients. Annals of neurology, 2011. 69(2): p. 375-388.

47. Derdikman, D., et al., Imaging spatiotemporal dynamics of surround inhibition in the barrels somatosensory cortex. The Journal of neuroscience, 2003. 23(8): p. 3100-3105.

48. David, O., J.M. Kilner, and K.J. Friston, Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage, 2006. 31(4): p. 1580-1591.

49. Andrew, C. and G. Pfurtscheller, Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalography and clinical neurophysiology, 1996. 98(2): p. 144-148.

50. Chen, C.-C., et al., Nonlinear coupling in the human motor system. The Journal of Neuroscience, 2010. 30(25): p. 8393-8399.

51. 涂安廷, 應用腦電圖預測中風病人復健情況; Using EEG to predict the outcome of stroke rehabilitation. 2014.

52. Talelli, P., et al., Theta Burst Stimulation in the Rehabilitation of the Upper Limb A Semirandomized, Placebo-Controlled Trial in Chronic Stroke Patients. Neurorehabilitation and neural repair, 2012. 26(8): p. 976-987.

53. Penny, W.D., et al., Comparing dynamic causal models. NeuroImage, 2004. 22(3): p. 1157-1172.

54. 林宥辰, 基於虛擬實境復健之中風後運動網路功能性重組研究; Cerebral re-organization of motor networks in response to VR based rehabilitation after stroke. 2014.

55. Stinear, C.M., et al., Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain, 2007. 130(1): p. 170-180.

指導教授 陳純娟(chun-chuan Chen) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明