博碩士論文 101350602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.235.29.190
姓名 羅莉涵(Maria Alejandra Del Rio Denis)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 被動冷卻策略:用來降低巴拿馬市的未來住宅計畫耗能的方法
(Passive cooling strategies as a method to reduce energy consumption of future dwelling projects in Panama City)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 不同型式光纖與集光器搭配之效率測試★ 微電滲泵之暫態熱流研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的目的是提出一個有效的方法,以降低位於熱帶氣候的巴拿馬市住宅中與熱舒適度相關能源消耗。本文有兩階段架構。首先,進行為期六個月的個案研究:在巴拿馬市一處現有的住宅內放置溫濕度記錄器,以記錄室內的變化。接下來,應用被動式冷卻策略來改善熱表現的概念設計一個住宅原型。本文採用Ecotect軟體進一步模擬出此原型:採用四種不同的自然通風技術來散熱,分別為不通風、全日通風、白天通風、夜晚通風。不論是現有的住宅或是本文提出的原型,都採用自然通風建築的兩套ASHRAE-55熱舒適度標準來評估,即是適應性舒適標準(ACS)與熱舒適度評估指標(PMV)作為熱舒適度量尺。研究結果顯示在此四種自然通風策略中,全日通風表現最佳,能達到最佳熱舒適度。本文主要的兩項發現分別為: (1)為達到最佳被動式冷卻,有必要結合增熱控制與熱散失兩項技術;(2)在未來的巴拿馬市住宅實行被動式冷卻策略,能降低能源消耗並達到熱舒適度。
摘要(英)
This thesis aimed to propose an effective method to reduce energy consumption related to thermal comfort in residences located in the tropical climate of Panama City. A two-stage framework was adopted in this research. First, a case study was conducted during 6 months; where a humidity-temperature data logger was placed inside an existing house in Panama City to record its indoor conditions. Then, a prototype of house was designed with passive cooling strategies for improving thermal performance. This proposed prototype was further simulated using Ecotect software, where four different natural ventilation techniques for heat dissipation were adopted; namely, no ventilation, full ventilation, day ventilation and night ventilation. Both the existent house and the proposed prototype were evaluated using two ASHRAE-55 thermal comfort standards for naturally ventilated buildings, namely, adaptive comfort standard (ACS) and a predicted mean vote (PMV) regression to use thermal sensation scale. Results shown that among all of the natural ventilation strategies implemented, full ventilation showed the best performances as it was the one to achieve the best thermal comfort. The two major findings of the study are: (1) to fully achieve passive cooling it is necessary to combine heat gain control and heat dissipation techniques, and (2) the implementation of passive cooling strategies can reduce the energy consumption and achieve thermal comfort in future dwellings in Panama City.
關鍵字(中) ★ 被動式冷卻
★ 熱舒適度
★ 自然通風
★ 熱帶氣候
★ 節能
關鍵字(英) ★ Passive cooling
★ Thermal comfort
★ Natural ventilation
★ Tropical climate
★ Energy saving
論文目次 ABSTRACT...............................................ii
ACKNOWLEDGEMENT....................................... iii
TABLE OF CONTENTS......................................iv
LIST OF TABLES AND FIGURES.............................vii
NOMENCLATURE...........................................xi
Chapter 1: INTRODUCTION................................1
1.1 Background......................................1
1.1.1 Energy crisis.................................1
1.1.2 Climate.......................................2
1.1.2.1 Heat index.....................................3
1.1.2.2 Panama City’s climate..........................4
1.1.3 Architecture..................................5
1.1.3.1 Architectural development of Panama City.......6
1.1.3.2 Climate and architecture.......................8
1.2 Objective and scope of the study...............10
1.3 Organization of the thesis.....................11
Chapter 2: LITERATURE REVIEW..........................12
2.1 Indoor Environmental Quality...................12
2.1.1 Thermal comfort..............................14
2.1.1.1 Adaptive comfort standard (ACS)...............15
2.1.1.2 Predicted mean vote (PMV).....................16
2.2 Passive and active means.......................19
2.2.1 Passive cooling..............................20
2.2.1.1. Envelope design (heat gain control)..........21
2.2.1.2. Passive and hybrid cooling techniques (heat dissipation)..........................................24
Chapter 3: METHODOLOGY................................28
3.1 Experimental method............................28
3.1.1 Case study...................................28
3.1.1.1 Building......................................28
3.1.1.2 Data-logger...................................29
3.1.1.3 Data collection and evaluation................29
3.1.1.4 Previous studies..............................29
3.1.2 Prototype....................................30
3.1.2.1 Design process................................31
3.1.2.2 Envelope design...............................33
3.1.2.3 Indoor space..................................35
3.1.2.4 Outdoor space.................................36
3.2 Performance analysis methods...................36
3.2.1 Simulation tool..............................36
3.2.1.1 Inputs........................................38
3.2.1.2 Previous studies..............................40
3.2.2 Thermal comfort standard for naturally ventilated buildings.............................................40
Chapter 4: RESULTS AND DISCUSSION.....................41
4.1 Case study.....................................41
4.1.1 Thermal comfort analysis.....................47
4.2 Prototype and simulation.......................49
4.2.1 Thermal comfort analysis.....................51
Chapter 5: CONCLUSION.................................56
REFERENCES............................................58
Appendix 1: WEATHER DATA..............................62
Appendix 2: SIMULATION TOOL...........................67
參考文獻 ABRI, MOI, 2003. Evaluation manual for green building in Taiwan, Architecture and Building Research Institute, Ministry of the Interior, Taiwan.

ABRI, MOI, 2004. Introduction to green remodeling projects for governmental buildings, Architecture and Building Research Institute, Ministry of the Interior, Taiwan.

BMU, 2011. Climate protection and growth, Germany’s Path into the Renewable Energy Age, Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, October.

Brager G. S., de Dear R., 2000. A standard for natural ventilation. ASHRAE Journal

Bekkouche S. M. A., Benouaz T., Yaiche M. R., Cherier M. K., Hamdani M., Chellali F., 2011. Introduction to control of solar gain and internal temperature by thermal insulation, proper orientation and eaves, Energy and Buildings 43 : 2414-2421.

Cha H-Y., Riffat S. B., Zhu J., 2010. Review of passive solar heating and cooling technologies. Renewable and Sustainable Energy Reviews 14: 781-789.

De Dear R., Brager G.S., 2002. Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and Buildings 34: 549-56.

Douglass C. D., 2010. Instructional modules demonstrating building energy analysis using a building information model, Master thesis, University of Illinois at Urbana-Champaign.

EERE, 2013. Department of energy (U.S.). Weather data. Accessed on October 29, 2013, http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_about.cfm

General Electric, 2014. Power consumption of appliances. Accessed on May 16, 2014. http://visualization.geblogs.com/visualization/appliances/

Grigoletti G., Sattler A. M., Morello A., 2008. Analysis of the thermal behavior of a low cost, single-family, more sustainable house in Porto Alegre, Brazil; Energy and Buildings 40: 1961-1971.

Halwatura R.U., Jayasingue M. T. R., 2007. Strategies for improved micro-climates in high density residential developments in tropical climates, Energy for sustainable development, Vol.11, Issue 4: 54-65.

Hoyt T., Schiavon S., Piccioli A., Moon D., Steinfield K., 2013. Thermal comfort tool. Center for the Built Environment (CBE), University of California Berkeley, http://cbe.berkeley.edu/comforttool/

IBT, 2014. Economy in Latin America, International Business Times. Accessed on March 28, 2014, http://www.ibtimes.com/panamas-economy-will-grow-over-5-percent-2014-making-it-fastest-growing-economy-latin-america

INEC, 2011. Electricity consumption per sector in Panama. National Institute of Statistics and Census. Accessed on March 21, 2014, http://www.contraloria.gob.pa/inec/ archivos/ P4731325-02.pdf

INEC, 2011. Household characteristics. National Institute of Statistics and Census. Accessed on December 19, 2013. http://www.contraloria.gob.pa/inec/ Publicaciones/Publicaciones.aspx?ID_SUBCATEGORIA=59&ID_PUBLICACION=357&ID_ IDIOMA=1&ID_CATEGORIA=13

Keeler M., Burke B., 2009. Fundamentals of Integrated Design for Sustainable Buildings, pages 69-121, John Wiley & Sons, New Jersey.

Kharrufa S. N., Adil Y., 2012. Upgrading the building envelope to reduce cooling loads, Energy and Buildings 55: 389-396.

Kordjamshidi M., 2011. Thermal comfort. Housing rating schemes, Green Energy and Technology, Chapter 3, Springer New York.

Kubota T., Chyee D. T. H., Ahmad S., 2009. The effects of night ventilation technique on indoor thermal environment for residential buildings in hot-humid climate of Malaysia, Energy and Buildings 41: 829-839.

Luxmoore D. A., Jayasinghe M. T. R., Mahendran M., 2005. Mitigating temperature increases in high lot density sub-tropical residential developments, Energy and Buildings 37: 1212-1224

Liping W., Hien W. N., 2007. The impacts of ventilation strategies and facade on indoor thermal environment for naturally ventilated residential buildings in Singapore, Building and Environment 42: 4006-4015.

Makaka G., Meyer E. L., McPherson M., 2008. Thermal behavior and ventilation efficiency of a low-cost passive solar energy efficient house, Renewable Energy 33: 1959-1973.

Meteotest, 2012. Meteonorm software. Weather data for any site of the world. http://meteonorm.com/products/meteonorm-software/

Musseli M., 2010. Passive cooling for air-conditioning energy savings with new radiative low-cost coatings, Energy and Buildings 42: 945-954.

Nicol J. F., Humphreys M. A., 2002. Adaptive thermal comfort and sustainable thermal standards for buildings, Energy and Buildings 34: 563-572.

PanamaAmerica, 2007. El clima y la arquitectura (Architecture and climate). Accessed on March 21, 2014, http://panamaamerica.com.pa/content/el-clima-y-la-arquitectura

Panama-Guide, 2008. New high-rise construction can increase energy crisis. Accessed on March 21, 2014, http://www.panama-guide.com/article.php/20080412105541718

Panama-weather, 2013-2014. Relative humidity historic record. Accessed on March 20, 2014. http://www.wunderground.com/history/airport/MPTO/2013/1/1/
CustomHistory.html?MR=1.

Panama-weather, 2013-2014. Air temperature historic record, Accessed on March 20, 2014. http://www.tutiempo.net/clima/Tocumen/787920.htm

Peeters L., de Dear R., Hensen J., D’haeseleer W., 2009. Thermal comfort in residential buildings: comfort values and scales for building energy simulation. Applied Energy 86: 772-780.

Raj V. A. A., Velraj E., 2010. Review on free cooling of buildings using phase change materials, Renewable and Sutainable Energy Reviews 14: 2819-2829.

REECA, 2014. 4E Program: Renewable energy and efficiency in Central America. Accessed on May 11, 2014, http://www.energias4e.com/noticia.php?id=2351

Rothfusz, 1990. The heat index equation, Accessed on May 11, 2014 http://www.hpc.ncep.noaa.gov/html/heatindex_equation.shtml

Roulet C. A., Bluyssen P. M., Muller B., Oliveira Fernandes E. 2012. Design of Healthy, Comfortable, and Energy-efficient Buildings; Sustainable Environmental Design in Architectural Impacts on Health, Chapter 6. Springer New York.

Sadafi N., Salieh E., Haw L. C., Jaafar Z., 2011. Evaluating thermal effects of internal courtyard in a tropical terrace house by computational simulation, Energy and Buildings 43: 887-893.

Sadineni S. B., Madala S., Boehm R. F., 2011. Passive building energy savings: A review of building envelope components, Renewable and Sustainable Energy Review 15: 2011: 3617-3631.

Santamouris M. Koloktsa M., 2013. Passive cooling dissipation techniques for buildings and other structures: The state of the art, Energy and Buildings 57: 74-94.

Sekhar S. C., Goh S. E., 2011. Thermal comfort and IAQ characteristics of naturally/mechanically ventilated and air-conditioned bedrooms in a hot and humid climate, Energy and Buildings 46: 1905-1916.

Turner S. C., 2011. What’s new in ASHRAE’s Standard on comfort? ASHRAE Journal, June.

Utama A., Gheewala S. H., 2008. Life cycle energy of single landed houses in Indonesia, Energy and Buildings 40: 1911-1916.

Worldbank, 2014. Climate change in Panama. May 11, 2014 http://sdwebx.worldbank.org/climateportalb/home.cfm?page=country_profile &CCode=PAN

Zhang Y., Wang J., Chen H., Zhang J., Meng Q., 2010. Thermal comfort in naturally ventilated buildings in hot-humid area of China; Building and Environment 45: 2562-2570.
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2014-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明