博碩士論文 101353006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:35.175.191.72
姓名 彭成彰(Cheng-Chang Peng)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 奈米射出成形技術及光學特性研究
(Nano injection molding and optical property)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 以數值模擬與實驗驗證研究 精密深溝滾珠軸承多道次溫間鍛造製程 -缺陷分析與模具設計合理化
★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究★ 釩氧化還原液流電池中多孔性碳電極在壓縮與電鍍後之電性、機械性質與型態分析
★ 近場電紡絲技術應用於可控制多根奈米纖維生成、選擇性沉積及奈米流道之製備★ 1.7 伏特奈米發電機-以直寫式近場電紡織奈米纖維並透過原位極化製作於可撓性基底
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 奈米射出成形,使用聚碳酸酯(PC)材料,能夠提升奈米結構的複製速度,光學特性n值接近玻璃,奈米射出成形可以縮短製程時間,4 sec cycle time 快速的提升生產效能,可以有效的降低成本,並且可以製作出高穿透率的幾何結構形狀。透過奈米射出成形也可以大面積且精準的複製奈米孔洞的幾何形狀,且利用模溫幾的溫度控制可以精準地控制奈米孔洞幾何形狀的深寬比複製,此篇paper 討論的深度落於200nm~400nm,孔洞的週期為700nm範圍內。奈米孔洞設計是可以降低反射率,分別以波長400nm 及550nm作為觀察點,單純鏡面無奈米孔洞的PC量測結果為10.2% 及 8.9%,再以深度400nm的奈米孔洞做比較,其量測量測結果為1.4% 及 2.1% 很明顯的此設計它可以有效地降低反射率。與傳統的娥眼設計製程只能透過蝕刻來進行,相對本研究提出了一種更為簡單便利的方式來製作奈米結構,大大縮短了製程時間,而且對於深度的控制也找出有效的控制方法,以製程而言,奈米射出成形相較於蝕刻來的容易,深度的控制更是簡單。此外也開始進行探討NHA(奈米孔洞陣列)對多層膜的影響和檢測的應用潛力。
摘要(英) A rapid, cost-effective and high-throughput process for nanotexturing subwavelength structures with high uniformity using the polycarbonate (PC) is realized via injection nanomolding. The process enables the precise control of nanohole array (NHA) surface topography (nanohole depth, diameter, and periodicity) over large areas thereby presenting a highly versatile platform for fabricating substrates with user-defined, functional performance. Specifically, the optical property of the PC substrates were systematically characterized and tuned through the modulation of the depths of NHA. The aspect ratio submicron holes can be easily modulated and experimentally proven by simply adjusting the molding temperature. The nanotextured depths were reliably fabricated in the range of 200 to 400 nm with a period of approximately 700 nm. The fabricated PC films can reduce the reflectivity from an original bare film of 10.2% and 8.9% to 1.4% and 2.1% with 400-nm depth of nanoholes at the wavelength of 400 and 550 nm, respectively. Compared with conventional moth-like nanostructures with nanopillar arrays with heights adjustable only by an etching process, this paper proposes a facile route with submicron holes to achieve a similar antireflective function, with a significantly reduced time and facile height modulation capability. Furthermore, the effects of multilayer coatings of dielectric and metallic layers on the nanomolded NHA have been performed and potential sensing application is explored.
關鍵字(中) ★ 亞波長
★ 聚碳酸酯
★ 奈米射出成形
★ 奈米孔洞陣列
★ 反射率
關鍵字(英) ★ Subwavelength
★ Polycarbonate (PC)
★ Injection nanomolding
★ Nanohole array (NHA)
★ Reflectivity
論文目次 Content
摘要 I
Abstract II
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 文獻回顧 1
1-2 射出成型 3
1-3 論文架構 6
第二章 奈米孔洞陣列生成技術 8
2-1導論 8
2-2 射出成形實驗 14
2-2-1 實驗因子分析 14
2-2-2 實驗規劃 18
2-2-3結果分析 22
2-2-4再現性實驗確認 36
2-3實驗結果分析 43
第三章奈米孔洞陣光學特性探討研究 45
3-1 特性分析 46
3-1-1深度特性分析 46
3-1-2 光學性質分析 49
3-2 多層膜分析 50
3-3結果與討論 52
第四章 結論 53
4-1奈米孔洞陣列生成技術 53
4-2 奈米孔洞陣光學特性探討 53
參考文獻 55
參考文獻 [1] Fan Z, Razavi H, Do J-W, Moriwaki A, Ergen O, Chueh Y-L, Leu PW, Ho JC,Takahashi T, Reichertz LA, Neale S, Yu K, Wu M, Ager JW, Javey A:Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 2009, 8:648–653.
[2] Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 2010, 9:368.
[3] Blossey R: Self-cleaning surfaces–virtual realities. Nat Mater 2003,2:301–306.
[4] Li X-M, Reinhoudt D, Crego-Calama M: What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 2007,36:1350–1368.
[5] Díaz C, Schilardi PL, Salvarezza RC: Fern_andez Lorenzo de Mele M.Langmuir 2007, 23:11206–11210.
[6] Cottin-Bizonne C, Barrat J-L, Bocquet L, Charlaix E: Low friction flows of liquids at nanopatterned interfaces. Nat Mater 2003, 2:237–240.
[7] Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY:Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2003,2:461–463.
[8] Ko H, Lee J, Schubert BE, Chueh Y-L, Leu PW, Fearing RS, Javey A: Hybrid core-shell nanowire forests as self-selective chemical connectors. Nano Lett 2009, 9:2054–2058.
[9] Masuda H, Fukuda K: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995,268:1466–1468.
[10] MacLeod A: Thin-Film Optical Filters. 3rd edition. Bristol: Institute of Physics Publishing; 2001.
[11] Willey R: Practical Design and Production of Thin Films. New York: Dekker; 2002.
[12] Kanamori Y, Sasaki M, Hane K: Broadband antireflection gratings fabricated.upon.silicon.substrates. Opt Lett 1999, 24:1422–1424.
[13] Lalanne P, Morris GM: Design, fabrication and characterization …structures for semiconductor anti-reflection coating in the visible domain. Proc SPIE 1996, 2776:300–309.
[14] Gombert A: Antireflective submicrometer surface-relief gratings for solar applications. Sol Energy Mater Sol Cells 1998, 54:333–342.
[15] Gombert A, Blasi B, Buhler C, Nitz P, Mick J, Hossfeld W, Niggemann M:Some application cases and related manufacturing techniques for optically functional microstructures on large areas. Opt Eng 2004,43:2525–2533.
[16] Boerner V, Abbott S, Bläsi B, Gombert A: Nanostructured holographic antireflection films. SID 03 Dig: HoBfeld W; 2003:68–71.
[17] Sinzinger S, Jahns J: Microoptics. 2nd edition. Weinheim: Wiley-VCH; 2003.
[18] Gale MT, Gimkiewicz C, Obi S, Schnieper M, Soechtig J, Thiele H,Westenhöfer S: Replication technology for optical microsystems.Opt Lasers Eng 2005, 43:373–386.
[19] Heckele M, Schomburg WK: Review on micro molding of thermoplastic polymers. J Micromech Microeng 2004, 14:R1–R14.
[20] Lee MH, Lim N, Ruebusch DJ, Jamshidi A, Kapadia R, Lee R, Seok TJ, Takei K,Cho KY, Fan Z, Jang H, Wu M, Cho G, Javey A: Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. Nano Lett 2011, 11:3425–3430.
[21] Izu M, Ellison T: Solar energy mater. Solar Cells 2003, 78:613–626.
[22] Gale MT: Replicated diffractive optics and micro-optics. Opt Photon News 2003, 14:24–29.
[23] Jain K, Klosner M, Zemel M, Raghunandan S: Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production. Proc IEEE 2005, 93:1500–1510.
[24] Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393:146–149.
[25] Tan H, Gilbertson A, Chou SY: Roller nanoimprint lithography. J Vac Sci Technol B 1998, 16:3926–3928.
[26] Mäkelä T, Haatainen T, Majander P, Ahopelto J: Continuous roll-to-roll nanoimprinting of inherently conducting polyaniline. Microelectron Eng 2007, 84:877–879.
[27] Mäkelä T, Haatainen T, Majander P, Ahopelto J: Trends in nanotechnology 2005 (TNT 2005). Oviedo, Spain; 2005.
[28] Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T: Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 1997, 71(19):2770.
[29] Gale MT: Replication techniques for diffractive optical elements. Microelectron Eng 1997, 34:321–339.
[30] Hong S-H, Lee J-H, Lee H: Fabrication of 50 nm patterned nickel stamp with hot embossing and electroforming process. Microelectron Eng 2007,84:977–979.
[31] Heyderman LJ, Schift H, David C, Ketterer B, Auf Der Maur M, Gobrecht J:Nanofabrication using hot embossing lithography and electroforming. Microelectron Eng 2001, 57(58):375–380.
[32] Lin Y-R, Lai KY, Wang H-P, He J-H: Slopetunable Si nanorod arrays with enhanced antireflection and self-cleaning properties. Nanoscale 2010, 2:2765–2768.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明