博碩士論文 101353022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:100.24.115.253
姓名 賴俊俊(CHUN-CHUN LAI)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
(Design, fabrication and performance evaluation for the elastic elements coupled multi-frequency piezoelectric harvester)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 無心研磨製程參數優化研究
★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例★ 精密熱鍛模擬及模具合理化分析
★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究★ 模組化滾針軸承自動組裝設備設計開發與功能驗證
★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究★ 雷射焊補運用於壓鑄模具壽命改善研究
★ 晶粒成長行為對於高功率元件可靠度改善的驗證★ HF-ERW製管製程分析及SCADA 工業4.0運用
★ 以數值模擬與實驗驗證研究 精密深溝滾珠軸承多道次溫間鍛造製程 -缺陷分析與模具設計合理化★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 釩氧化還原液流電池中多孔性碳電極在壓縮與電鍍後之電性、機械性質與型態分析★ 近場電紡絲技術應用於可控制多根奈米纖維生成、選擇性沉積及奈米流道之製備
★ 奈米射出成形技術及光學特性研究★ 1.7 伏特奈米發電機-以直寫式近場電紡織奈米纖維並透過原位極化製作於可撓性基底
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文中,設計與製作了三種型態的彈性元件耦合多頻寬壓電獵能器,作為振動能量獵能器的應用。透過特徵頻率和阻抗匹配的實驗,以評估三種型態獵能器相關之輸出功率。
A結構型態,以三個螺旋彈簧來支撐壓電懸臂樑,取代傳統的由剛體支持的單自由度壓電懸臂樑獵能器。在振動加速度1.5g時最佳共振頻率為105 Hz,且在最佳負載電阻9.1kΩ時獲得最高的輸出功率10.7 W(瓦)。在振動加速度0.5g時110 Hz被選為最佳共振頻率,且在最佳負載電阻8.2kΩ時獲得最高的輸出功率0.01 mW(毫瓦)。
B結構型態,選用具有回彈性質的金屬薄板,設計其機構特性成為多種彈性體組合而成的可撓性結構,成為多頻寬壓電懸臂樑獵能器。在振動加速度1.5g時有三個最佳共振頻率為30、65和95 Hz時,且在最佳負載電阻68kΩ時獲得最高的輸出功率0.54 W。在振動加速度0.5g時分別在頻率30和65 Hz時出現兩個最佳共振頻率,且在最佳負載電阻91kΩ時獲得最高的輸出功率116.8 mW。
C結構型態,外部使用3D列印技術作成圓柱形的上蓋和底座加以包覆,內部固定鈕扣型大小的環形壓電懸臂樑,也結合彈性螺旋彈簧成為多頻寬壓電懸臂樑獵能器。在振動加速度1.5g時出現一個連續寬峰最佳共振頻率為55至80 Hz,且在最佳負載電阻68kΩ時獲得最高的輸出功率0.41 mW。在振動加速度0.5g時最佳共振頻率為25 和110 Hz時,且在最佳負載電阻100kΩ時獲得最高的輸出功率1.40 mW。
這三種結構型態的壓電獵能器都是兩自由度以上振動體,且實驗結果都獲得多頻寬的共振輸出。因此,可以認定彈性元件的耦合,可提供較寬範圍的共振頻率頻寬。使壓電懸臂獵能器成為多頻寬壓電獵能器,也增強了其獵能性能和頻率的靈活性。
摘要(英) In this study, three models of elastic elements coupled multi-frequency piezoelectric harvester have been designed and developed as the application of vibration-based energy harvester. Through electrical tuning of the characteristic frequency and impedance matching, the output power of the three models of the harvester has been evaluated.
The Type A model, a new piezoelectric cantilever generator using elastic spiral springs as a supporting mechanism, was fabricated for vibration-based energy harvester application to replace the basic of single-degree-of-freedom (DOF) cantilever generator system supported by a rigid metal bar. Under a base acceleration magnitude of approximately 1.5g, the strongest output power 10.7W was obtained at an optimum load resistance of 9.1kΩ. Under a base acceleration magnitude of approximately 0.5g, the strongest output power 0.01mW was obtained at a optimum load resistance of 8.2kΩ.
The Type B model, a new piezoelectric cantilever generator using elastic metal sheet, was fabricated with multiple flexible materials to provide elastic elements coupled multi-frequency piezoelectric harvester. Under a base acceleration magnitude of approximately 1.5g, the strongest output power 0.54W was obtained at an optimum load resistance of 68kΩ. Under a base acceleration magnitude of approximately 0.5g, the strongest output power 116.8mW was obtained at an optimum load resistance of 91kΩ.
The Type C model, a new piezoelectric cantilever generator using 3D printing to produce a cylinder where the circle cantilever beam is mounted in, was fabricated with elastic spiral spring to provide multi-frequency piezoelectric harvester. Under a base acceleration magnitude of approximately 1.5g, the strongest output power 0.41mW was obtained at an optimum load resistance of 68kΩ. Under a base acceleration magnitude of approximately 0.5g, the strongest output power 1.40mW was obtained at an optimum load resistance of 100kΩ.
The generator could be a 2-DOF vibrating body, which can offer a wide resonance frequency bandwidth. Therefore, it is considered that the elastic spring enhanced the performance and frequency flexibility of the piezoelectric cantilever generator for broadband energy harvesting.
關鍵字(中) ★ 彈性元件
★ 壓電
★ 獵能器
★ 懸臂樑
關鍵字(英)
論文目次 中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
一、序論 1
1.1前言 1
1.2研究背景 2
1.3研究動機與目的 3
1.4本文架構 4
二、壓電原理與實驗架設 5
2.1壓電原理 5
2.1.1壓電效應 5
2.1.2壓電材料 6
2.1.3壓電方程式 8
2.2實驗架設 13
2.2.1實驗儀器架設 13
2.2.2壓電獵能器—特徵頻率實驗 14
2.2.3壓電獵能器—阻抗匹配實驗 14
三、壓電獵能器模型架構與分析 15
3.1壓電獵能器模型—A結構型態 15
3.2壓電獵能器模型—B結構型態 18
3.3壓電獵能器模型—C結構型態 21
四、實驗結果與討論 25
4.1壓電獵能器模型—A結構型態之實驗結果與討論 26
4.1.1 A結構—加速度1.5g—特徵頻率 26
4.1.2 A結構—加速度1.5g—阻抗匹配 28
4.1.3 A結構—加速度0.5g—特徵頻率 29
4.1.4 A結構—加速度0.5g—阻抗匹配 31
4.2壓電獵能器模型—B結構型態之實驗結果與討論 32
4.2.1 B結構—加速度1.5g—特徵頻率 32
4.2.2 B結構—加速度1.5g—阻抗匹配 33
4.2.3 B結構—加速度0.5g—特徵頻率 34
4.2.4 B結構—加速度0.5g—阻抗匹配 37
4.3壓電獵能器模型—C結構型態之實驗結果與討論 38
4.3.1 C結構—加速度1.5g—特徵頻率 38
4.3.2 C結構—重力加速度1.5g—阻抗匹配 41
4.3.3 C結構—加速度0.5g—特徵頻率 42
4.3.4 C結構—加速度0.5g—阻抗匹配 45
4.4壓電獵能器模型—A、B和C結構型態之實驗總結 47
五、結論與建議 49
參考文獻 51
參考文獻 [1] Rabaey J, Ammer J, Karalar T, Li S, Otis B, Sheets M and Tuan T, Picoradios for
wireless sensor networks: the next challenge in ultra-low-power design Proc. Int. Conf.
on Solid-State Circuits (Feb. 2002).
[2] Warneke B, Atwood B and Pister K S J, Smart dust mote forerunners MEMS: 14th
Annual Int. Conf. on Microelectromechanical Systems (Jan. 2001).
[3] Hill J and Culler D 2002 Mica, a wireless platform for deeply embedded networks,
IEEE Micro 22 12–24.
[4] Roundy S, Otis B P, Chee Y-H, Rabaey J M and Wright P K, A 1.9 GHz RF transceiver beacon using environmentally scavenged energy ISPLED ’03 (Aug. 2003).
[5] Schmidt V H 1986 Theoretical electrical power output per unit volume of PVF2 and
mechanical-to-electrical conversion efficiency as functions of frequency Proc. 6th
IEEE Int. Symp. on Applications of Ferroelectrics pp 538–42.
[6] Shenck N S and Paradiso J A , Energy scavenging with shoe-mounted piezoelectrics,
IEEE Micro 21 30–41 (2001).
[7] Glynne-Jones P, Beeby S P, James E P and White N M, The modelling of a piezoelectric vibration powered generator for microsystems, Transducers 01/Eurosensors XV (June 2001).
[8] Ottman G K, Hofmann H F and Lesieutre G A , Optimized piezoelectric energy
harvesting circuit using step-down converter in discontinuous conduction mode,
IEEE Trans. Power Electron. 18 696–703 (2003).
[9] Roundy S, Wright P K and Rabaey J, A Study of low level vibrations as a power source
for wireless sensor nodes, Comput. Commun. 26 1131–44 (2003).
[10] Shearwood C and Yates R B, Development of electromagneticmicro-generator,
Electron. Lett. 33 1883–4 (1997).
[11] Amirtharajah R and Chandrakasan A P, Self-powered signal processing Using
vibration-based power generation, IEEE J. Solid-State Circuits 33 687–95 (1998).
[12] Ching N N H, Wong H Y, Li W J, Leong P H W and Wen Z, A
laser-micromachinedmulti-modal resonating power transducer for wireless
sensing systems, Sens Actuators A 97/98 685–90 (2002).
[13] El-hami M, Glynne-Jones P, White N M, Hill M, Beeby S,James E, Brown A D
and Ross J N, Design and fabrication of a new vibration-based electromechanical
power generator, Sens Actuators A 92 335–42 (2001).
[14] Meninger S, Mur-Miranda J O, Amirtharajah R, Chandrakasan A P and Lang J H,
Vibration-to-electric energy conversion, IEEE Trans. Very Large Scale Integr.(VLSI)
Syst. 9 64–76 (2001).
[15] Roundy S, Wright P K and Pister K S J, Micro-electrostatic vibration-to-electricity
converters, ASME IMECE (New Orleans, LA, Nov. 2002).
[16] MiyazakiM, Tanaka H, Ono G, Nagano T, Ohkubo N, Kawahara T and Yano K,
Electric-energy generation using variable-capacitive resonator for power-free
LSI: efficiency analysis and fundamental experiment ISLPED 2003
(Seoul, Korea, Aug. 2003).
[17] Roundy S, Wright P K and Rabaey J M, Energy Scavenging for Wireless Sensor
Networks (Norwell, MA: Kluwer–Academic 2003).
[18] S Roundy and P K Wright, A piezoelectric vibration based generator for wireless
communication, Smart Mater.Struct.13(2004)1131-1142.
[19] H. A. Sodano, G. Park, and D. J. Inman, Estimation of Electric Charge Output for
Piezoelectric Energy Harvesting ,Strain 40, 49–58 (2004).

[20] S. Roundy and P. K. Wright, A piezoelectric vibration based generator for wireless
electronics, Smart Mater. Struct. 13, 1131 (2004).
[21] A. Erturk and D. J. Inman, Piezoelectric Energy Harvesting (Wiley, Chichester, UK,
2011).
[22] E. Jacquelin, S. Adhikari, and M. I. Friswell, A piezoelectric device for impact energy
harvesting, Smart Mater. Struct. 20,105008 (2011).
[23] J. Twiefel and H. Westermann, Multiphysics finite element model of a
frequency-amplifying piezoelectric energy harvester with impact coupling for low-frequency vibrations ,J. Intell. Mater. Syst. Struct. 24, 1291 (2013).
[24] S. C. Stanton, C. C. McGehee, and B. P. Mann, Reversible hysteresis for broadband
magnetopiezoelastic energy harvesting ,Appl. Phys. Lett. 95, 174103 (2009).
[25] S. Zhao and A. Erturk, On the stochastic excitation of monostable and bistable
electroelastic power generators: Relative advantages and tradeoffs in a physical system,
Appl. Phys. Lett. 102, 103902 (2013).
[26] P. Kim and J. Seok, A multi-stable energy harvester: Dynamic modeling and bifurcation
analysis, J. Sound Vib. 333, 5525–5547 (2014).
[27] A. Erturk, J. Hoffmann, and D. J. Inman, A piezomagnetoelastic structure for broadband
vibration energy harvesting, Appl. Phys. Lett. 94, 254102 (2009).
[28] A. Erturk and D. J. Inman, Broadband piezoelectric power generation on high-energy
orbits of the bistable Duffing oscillator with electromechanical coupling, J. Sound Vib.
330, 2339–2353 (2011).
[29] S. C. Stanton, Nonlinear dynamics for broadband energy harvesting: Investigation of a
bistable piezoelectric inertial generator, C. C. McGehee, and B. P. Mann, Physica D.
239, 640–653 (2010).
[30] R. L. Harne and K. W. Wang, A review of the recent research on vibration energy
harvesting via bistable systems, Smart Mater. Struct. 22, 023001 (2013).
[31] T V Galchev, J McCullagh, R L Peterson and K Najafi, Harvesting traffic-induced
vibrations for structural health monitoring of bridges, J. Micromech. Microeng.
21(2011)104005(13pp).
[32] Y. B. Jeon et al., MEMS power generator with transverse mode thin film PZT ,
Sens. Actuators A 122 (2005) 16.
[33] H. B. Fang et al., Fabrication and performance of MEMS-based piezoelectric
power generator for vibration energy harvesting, Microelectron. J. 37 (2006) 1280.
[34] W. J. Choi et al. ,Energy harvesting MEMS device based on thin film piezoelectric
cantilevers, J. Electroceram. 17 (2006) 543.
[35] R. A. Islam and S. Priya, Realization of high-energy density polycrystalline piezoelectric
ceramics, Appl. Phys. Lett. 88 (2006) 032903.
[36] J. Cho et al., Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment, J. Micromech. Microeng. 15 (2005) 1804.
[37] A. Massaro et al., Freestanding piezoelectric rings for high efficiency energy harvesting at low frequency, Appl. Phys. Lett. 98 (2011) 053502.
[38] 吳郎,電子陶瓷—壓電,全欣資訊圖書,1994。
[39] http://www.physikinstrumente.com/technology.html
[40] http://www.aurelienr.com/electronique/piezo/piezo.pdf
[41] W.X Liao and M.C Tsai, Design and Analysis of a Piezoelectric Transducer Applied to Low-frequency Electric Power Generation, Department of Mechanical Enginneering National Cheng Kung University, 2007.
[42] http://medicaldesign.com/components/precision-piezo
[43] Thunder White Paper, Fuel injector using two piezoelectric devices, Face International Corporation, 2001.
指導教授 傅尹坤 審核日期 2015-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明